Radiation Source rate estimation through Data Assimilation of gamma dose rate measurements for operational nuclear emergency response systems

V. Tsiouri ^{*1}, S. Andronopoulos¹, I.Kovalets², L. Dyer³, J.G. Bartzis ⁴

¹National Centre for Scientific Research "Demokritos", Institute of Nuclear Technology and Radiation Protection, Environmental Research Laboratory, Athens, Greece, email: <u>vtsiouri@ipta.demokritos.gr</u>, <u>sandron@ipta.demokritos.gr</u>

² National Academy of Sciences of Ukraine, Department of Environmental Modelling, Institute of Mathematical Machine and System Problems, Kiev, Ukraine, email: <u>ik@ucewp.kiev.ua</u>

³Safety, Environmental and Radiological Assurance, Australian Nuclear Science and Technology Organisation, Sydney, Australia, email: <u>Leisa.Dyer@ansto.gov.au</u>

⁴University of West Macedonia/Department of Mechanical Engineering, Environmental Technology Laboratory, Kozani, Greece, email: <u>bartzis@uowm.gr</u>

* Corresponding author.

Abstract: This paper presents an evaluation of an innovative data assimilation method that has been recently developed in NCSR Demokritos for estimating an unknown emission rate of radionuclides in the atmosphere, with real-scale experimental data. The efficient algorithm is based on the assimilation of gamma dose rate measured data in the Lagrangian atmospheric dispersion model DIPCOT and uses variational principles. The DIPCOT model is used in the framework of the nuclear emergency response system (ERS) RODOS. The evaluation is performed by computational simulations of dispersion of Ar-41 that was emitted routinely by the Australian Nuclear Science and Technology Organisation's (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. In this paper the algorithm is evaluated against a more complicated case than others used in previous studies. There was only one monitoring station available each day. The area surrounding the reactor is characterized by moderately complicated topography and varying land cover. Overall the estimated release rate approaches the real one to a very satisfactory degree as revealed by the statistical indicators of errors.

Keywords: radiation source rate estimation, data assimilation, variational method, Lagrangian model, nuclear accidental releases

Copyright © 201x Inderscience Enterprises Ltd.

Bibliographical notes: Vasiliki Tsiouri is a Physicist. In 2011 she defended her PhD in development of Data Assimilation methods in Atmospheric Dispersion models used in Emergency response systems in the Department of Mechanical Engineering, University of West Macedonia, Greece. She worked as an associate scientist at the Institute of Environmental Research and Sustainable Development (National Observatory of Athens) in atmospheric pollution monitoring and modelling. Since 2005 she is an associate scientist at the Institute of Nuclear Technology & Radiation protection, NCSR "Demokritos". Her main research field is the development and application of Nuclear emergency response methods for predicting airborne hazards from accidental releases.

Spyros Andronopoulos is Researcher at the Environmental Research Laboratory/INTRP of NCSR "Demokritos". He received his Ph.D. in Atmospheric Dispersion from the University of Athens, Greece, in 1994. His research interests are in modelling of atmospheric dispersion, mesoscale prognostic and diagnostic meteorology, meteorological data assimilation, urban air quality and decision-support systems for air pollution situations. He has participated in several European research projects and has published in international journals and conferences.

Ivan Kovalets received his MSc in applied physics in 1996 from Moscow Institute of Physics and Technology. In 2001 he defended his PhD in computational fluid dynamics in the Institute of Hydromechanics of the National Academy of Sciences of Ukraine (NASU). Since 1999 he has been employed as a research scientist at the Institute of Mathematical Machine & System Problems NASU. In 2002 and 2005 he worked in NCSR "Demokritos" as a visiting scientist due to EURATOM fellowships. His today's research interest is data assimilation in meteorological and atmospheric dispersion models, used in emergency response systems.

Leisa L. Dyer received her BSc (Hons) in Applied Mathematics from the University of New South Wales, Sydney, Australia in 2002. She joined ANSTO in 2003 as a computational modeller, and was appointed to an atmospheric scientist in 2007. Areas of research have included transport and land-surface processes in global climate models, isotopic tracers in atmospheric transport, receptor modelling of aerosol data and most recently, evaluating atmospheric dispersion models in complex terrain. She is responsible for the Meteorological and Environmental Gamma Monitoring Networks at ANSTO and maintaining the emergency response computer system.

John G. Bartzis is Professor in the Department of Mechanical Engineering, at the University of West Macedonia, Greece. He obtained his Ph.D. in Nuclear Engineering from the MIT, USA (1977). His field of scientific activities includes environmental computational fluid dynamics, indoor and outdoor air pollution, environmental impact of energy production, hydrogen technology and safety. He has participated in or coordinated numerous European Re-search Projects in the field of environment. He participates in several international scientific committees. He has authored or co-authored over 150 publications in journals, conference proceedings, books, reports, etc.

Introduction

In nuclear power plant accidents that involve release of radionuclides in the atmosphere, the emission rate of radioactive material is usually unknown. During the emergency phase the estimated source term can differ from the true one by the factor of 10 or more (US NRC, 1990). Therefore improving source rate estimation is of primary importance. A way to assess the release rate is data assimilation of gamma dose measurements which are typically available around every nuclear power plant. In this respect an innovative computational method has been recently developed in NCSR Demokritos for estimating the unknown emission rate of radionuclides in the atmosphere. The algorithm is based on assimilation of gamma dose rate measured data in the Lagrangian atmospheric dispersion model DIPCOT (Andronopoulos, et al., 2009) used in the framework of the nuclear emergency response system (ERS) RODOS (Raskob W., 2007) and uses variational principles. The method is described in Tsiouri, et al. (2011), and Tsiouri et al., (2012). In the latter work (Tsiouri, et al., 2012) the method was successfully evaluated against the fluence rate measurements in field experiment of Ar-41 atmospheric dispersion in Mol, Belgium (Drews, et al., 2002). In the present work the method is evaluated against a more complicated case using gamma dose rate measurements from Ar-41 routine releases at the Australian Nuclear Science and Technology Organisation's (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. The area around the research reactor is characterized by moderately complex topography and spatially varying land cover. The Ar-41 data base that is used for the purposes of the study covers various seasons during 2002-03 and includes measured gamma radiation dose rates from 4 monitoring stations located in a radius of 5 km around the research reactor. There are 16 days of gamma radiation dose measurements but only one monitoring station is available each day. Therefore the challenge for improving the source rate in this case is the assimilation of gamma dose rate measured data from only one monitoring station and the complex terrain of dissected plateaus and valleys that surrounds ANSTO.

Methodology

Model Description

DIPCOT (Andronopoulos, S. et al., 2009) is a 3-dimensional model, which simulates atmospheric dispersion estimating particle (puff's) trajectories. It has been comprehensively validated against numerous field and laboratory experiments on atmospheric dispersion (e.g., Andronopoulos, S. et al., 2010a) and it is included in the European RODOS (Real-time, On-line, DecisiOn Support) system for nuclear emergencies. In DIPCOT there are two modes of particles /puffs movement, the stochastic mode (SM) and the deterministic mode (DM). In deterministic mode puffs are transported by the average wind field and grow in size according to well-known Pasquill-type relationships. In stochastic mode puffs are transported also by wind fluctuations based on the Langevin equation, formulated for stationary homogeneous isotropic turbulence at the horizontal direction, and on inhomogeneous Gaussian turbulence for the vertical direction, i.e., particles' equations of movement become stochastic. Concentration C (activity concentration of nuclides in air) and gamma dose rates at a

particular location and time are calculated by summing the contribution of all neighbouring puffs. A description of the gamma dose calculation methods used in DIPCOT is given in Andronopoulos, S. et al., (2009) and in Andronopoulos, S. et al., (2010a).

Data Assimilation algorithm

An innovative and efficient methodology based on variational data assimilation (DA) is used for estimating the unknown emission rate (Tsiouri, V. et al., 2011 and Tsiouri, V. et al., 2012). The main objective of the DA method is the minimization of the following cost function with respect to the control vector $\overline{\psi}$ which consists of the source rates corresponding to times of releases of puffs: \overline{q} .

$$J = J_1 + J_2, J_1 = \left(\overline{\psi} - \overline{\psi}^b\right)^T \underline{\underline{B}}^{-1} \left(\overline{\psi} - \overline{\psi}^b\right)$$
$$J_2 = \sum_{n=1}^{N_o} \sum_{k=1}^K \sigma_o^{-2} \left(d_k^o\left(t_n\right) - \tilde{d}\left(\overline{r}^k\right)\right)^2 = \left(\overline{d}^o - \underline{\underline{G}}\overline{\psi}\right)^T \underline{\underline{O}}^{-1} \left(\overline{d}^o - \underline{\underline{G}}\overline{\psi}\right)$$
(1)

Here $\overline{\psi}^{b}$ is the first guess estimation of the control vector, \underline{O} , \underline{B} are the covariance matrices of the errors of the observations and the background errors respectively; the vector $\overline{d}^{o} \in \mathbb{R}^{N_{0}K}$ consists of the gamma dose rates $d^{o}(n,k)$, measured on each time interval Δt_{n} by the *k*-th station. The elements of d^{o} are ordered sequentially as follows: $d_{i}^{o} = d_{(n-1)K+k}^{o} = d^{o}(n,k)$.

For substantial improvement in numerical efficiency and accuracy and to enable using the DA method also in the framework of the stochastic Lagrangian atmospheric dispersion models, the control vector reduction technique explained in detail in Tsiouri V. et al. (2012) is used. This technique is based on the assumption that during small enough time interval Δt the source rate can be considered as constant with sufficient accuracy. Then the particles could be joined in $P = N_p / \Pi$ groups with Π particles in each group being characterized by the same source rate: $q_{(j-1)\Pi+1} = q_{(j-1)\Pi+2} = \dots = q_{j\Pi} = \tilde{q}_j, 1 \le j \le P$. Here \tilde{q}_j are the values characterizing the source rate of the j-th group of particles, which form the reduced control vector: \tilde{q} of size P. Clearly the value of P depends on the choice of the time interval Δt during which the source rate could be considered as constant and thus it is a free variable that depends on the expert judgment of the user. Note that if P=1, then the source rate is assumed to be constant during the whole release interval. Instead of initial problem of minimizing equation (1) with respect to the control vector \overline{q} consisting of the release rates of individual particles the 'reduced' minimization problem is solved in which the same function is minimized with respect to the reduced control vector \tilde{q} . The cost function (equation 1) with constraint of positive control vector values is minimized using the IMSL ® package (IMSL Inc., 1987).

Applications – results

In the present work data assimilation runs are performed and the data assimilation algorithm is evaluated against the measured release rate from the Ar-41 database developed at the Australian Nuclear Science and Technology Organisation's (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. Specifically 16 different cases are simulated that cover winter and summer periods of the years 2002 and 2003 and include all the atmospheric stability conditions. The Ar-41 data base used for the method evaluation include the Ar-41 stack emission rate, measured meteorological data from 2 stations and measured gamma dose rates from 4 monitoring stations located in a radius of 5 km around the reactor. All the above data were available in 15-min time intervals. The terrain elevation and the land cover were available on a grid of 25 m resolution for the area of interest around the site. Figure 1 shows the computational domain with terrain elevation contours, the Ar-41 release location, the meteorological stations and the gamma dose rate detectors. The terrain is moderately complicated with hills of about 190m height and a valley that transverses the domain. The land cover is varying, including urban (south-east part), suburban (central part), woods (along the river) and low vegetation (north and south-west part) areas. The available meteorological measurements included wind speed, wind direction and temperature at the levels of 10 and 49 m for the station Met00 and wind speed and direction at 18.5 m for the station Met01 (figure 1). The atmospheric stability has been determined by the pre-processors for each 15-min time interval from the temperature gradient between 10 and 49 m and from the wind speed. The raw wind velocity data of 1 min sampling at heights 69 m and 78 m have been averaged on 10 min intervals to drive the dispersion model, together with the Pasquill-Gifford stability categories given in 10 min intervals in the data base. The meteorological data were pre-processed by the meteorological pre-processor FILMAKER of the RODOS system to prepare input meteorological fields for the DIPCOT model.

Simulations with the DIPCOT model have been performed with the following set of parameters. The puffs were released at a time interval $\tau \approx 2s$ and at a time interval $\tau \approx 4s$. Simulations have been performed in the stochastic mode of DIPCOT operation. The first guess source emission rate was set by a factor of 10 greater than the true rate. Different number of source time intervals (parameter *P* of CVR technique) has been used in different runs. A detailed description of the simulations is given in Table 1.

Case (date)	Station name/	Detector Point (Station #)	Distance from HIFAR(km)	Case details	Tested Value of P /corresponding values of time intervals (Δt) during which the source rate is assumed to be constant
Day 1 (06/06/03)	Waste Services (WS)	17	0.73	Winter, unstable conditions	1,2 and 3/ Δt ~450,225,150 min
Day 2 (17/12/2002)	Main Gate (MG)	16	0.82	Summer, stable conditions	1,2 and 3/ Δt ~180,60,30 min
Day 3 (22/06/2003)	Boys Town (BT)	18	2.78	Winter, stable conditions	1,2 and 3/ Δt ~405,202,5,135 min
Day 4 (09/07/2003)	Barden Ridge (BR)	9	3.33	Winter, stable conditions	1,2 and 3/ Δt ~210,105,70 min

Table 1 The detailed description of the simulations.

Figure 1 The computational domain with terrain elevation contours, the Ar-41 release location, the meteorological stations (Met00, Met01) and the gamma dose rate detectors (Det9, Det16, Det 17, Det18)

How efficient is the Dipcot model in estimating the unknown source rate with the implementation of the data assimilation algorithm can be clearly seen in Figure (2). Figure (2) presents the source emission rate estimations as result of the assimilation of gamma dose rate data for the cases of Day 1, Day 2, Day 3 and Day 4 in case of the stochastic version of DIPCOT against time. The source rate is estimated at fixed intervals over the release period of time depending on the tested value of P. Results with different number of groups P in control vector reduction procedure are presented. The true source rate is known but we supposed we don't know it and an arbitrary value of it was taken (10 times more). As it can be seen from figure (2) the algorithm managed to estimate the unknown source rate. The adjusted source functions in all cases are much better than the first guess source function. Overall the estimated release rate approaches the real one to a very satisfactory degree for Day 1 (Det 17), Day 2 (Det 16) and Day 3 (Det 18) cases under all stability conditions. For Day 4 (Det 9) because of the small sample size the results are less satisfactory, but even in this worst case the algorithms improves the source rate. It is important to refer that there was only one monitoring station available each day, therefore even with assimilation of gamma dose rate measured data from only one monitoring station the DA method allows for substantial improvement of source rate.

This qualitative result is confirmed with the results of the mean relative absolute error (MAE) and the mean relative bias (MRB) presented in the Table 2 ($MAE = \langle |q^a - q^t| \rangle / \langle q^t \rangle$, $MRB = \langle q^a - q^t \rangle / \langle q^t \rangle$), where q is the source function, $\langle \rangle$ means averaging, superscripts 'a' and 't' denote the analyzed and the true source function respectively). The results obtained by the stochastic version of DIPCOT at a time interval $\tau \approx 2s$ for Day 1, Day 2, Day 3 and Day 4 cases and with different values of the CVR parameter P are presented in the Table 2. The Results by setting the time interval that the puffs were released to $\tau \approx 4s$ are also presented for the Day 1. Generally as follows from these results in all cases the analyzed source rate in the assimilation runs is much better than the first guess function even if in the forward run (e.g. Day 4) the model did not succeed in attaining the suggested satisfactory performance as reported in Andronopoulos S., et al. (2010b). Satisfactory results also obtained even if we reduce the no. of puffs to half as it can be easily seen in table 2 (for Day 1 case).

Figure 2 Release rate estimations as result of gamma dose rate assimilation, for Day 1, Day 2, Day 3 and Day 4 cases.

Day 1 - WS station (Det 17)

Conclusions

Title

The innovative and efficient data assimilation (DA) method that has been recently developed in NCSR Demokritos for estimating an unknown emission rate of radionuclides in the atmosphere is evaluated using gamma dose rate measurements from Ar-41 routine releases at the Australian Nuclear Science and Technology Organisation's (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. The area around the research reactor is characterized by moderately complex topography and spatially varying land cover. The Ar-41 data base that is used for the purposes of the study covers various seasons during 2002-03. The method is based on the assimilation of gamma dose rate measured data in the Lagrangian stochastic atmospheric dispersion model DIPCOT and uses variational principles. The DIPCOT model is used in the framework of the nuclear emergency response system (ERS) RODOS. In the DA runs performed in this study, the first guess source emission rate has been set by a factor of 10 greater than the true one. In all cases of DA runs the statistical indicators of errors of the estimated source emission rate as compared to the measured one were reduced. In all cases the estimated release rate approaches the real one to a very satisfactory degree as revealed by the statistical indicators of errors under all stability conditions. Even for the Day 4 (Det 9) with small sample size the algorithm improves the source rate. The data assimilation method is successfully evaluated against a complicated case, under a range of atmospheric stability conditions. There was only one monitoring station available each day, therefore even with assimilation of gamma dose rate measured data from only one monitoring station the DA method allows for substantial improvement of source rate. Therefore, the presented results demonstrate the potential of the developed data assimilation algorithm for application in operational nuclear emergency response systems.

Table 2Mean absolute relative error (MAE) and mean relative biases (MRB) of calculatedsource function as compared to measured source function. Errors of the first guess source functionas well as the errors of source functions corrected in assimilation runs with different values of CVRparameter P.

Case	Station name	Detector	No.of	Р	MAE	MRB
		Point	puffs			
		Station #				
Day 1	Waste	17	13500	First	9.0	9.0
	Services (WS)			guess		
Day 1	Waste	17	13500	3	0.62	0.46
	Services (WS)					
Day 1	Waste	17	13500	2	0.86	0.71
	Services (WS)					
Day 1	Waste	17	13500	1	0.06	-0.06
	Services (WS)					
Day 1	Day 1 Waste		6300	First	9.0	9.0
	Services (WS)			guess		
Day 1	Waste	17	6300	3	1.3	1.14
	Services (WS)					
Day 1	Waste	17	6300	2	1.12	1.02
	Services (WS)					
Day 1	Waste	17	6300	1	0.02	-0.01
	Services (WS)					
Day 2	Main Gate	16	5400	First	9.0	9.0
	(MG)			guess		
Day 2	Main Gate	16	5400	3	0.80	-0.67
	(MG)			-		
Day 2	Main Gate	16	5400	2	1.12	1.12
	(MG)			-		
Day 2	Main Gate	16	5400	1	1.12	1.12
	(MG)	10	10244	D ' /	0.0	0.0
Day 3	Boys Town	18	10344	First	9.0	9.0
	(B1)	10	10244	guess	0.00	0.70
Day 3	Boys Iown	18	10344	3	0.88	0.70
D 2	(B1)	1.0	10244	2	0.20	0.00
Day 3	Boys Town	18	10344	2	0.28	-0.09
Day 2	(B1) Dava Taum	19	10244	1	0.17	0.17
Day 5	DOYS TOWII	18	10344	1	0.17	-0.17
Day 4	(DI) Dardan Didaa	0	6200	First	0.0	0.0
Day 4	(PP)	9	0300	FIISt	9.0	9.0
Day A	Barden Ridge	0	6300	guess 2	4 58	4 58
Day 4	(BR)	7	0500	۷	4.30	4.30
Day 4	Barden Ridge	9	6300	1	4 1 1	4 1 1
Duy T	(BR)		0500	1	7,11	7.11

Acknowledgments

This paper is a revised and expanded version of a paper entitled [Radioactive material release rate estimation through Data Assimilation of gamma dose rate measurements] presented at the 14th International Conference on *Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes*, Kos (Greece), October 2-6, 2011."

References

- Andronopoulos, S. and J.G. Bartzis, 2010a: Gamma radiation dose calculation method for Lagrangian-puff atmospheric dispersion models used in real-time emergency response systems. *Journal of Radiological Protection* Vol.30(4), pp. 747-759.
- Andronopoulos, S., L.L Dyer, E. Davakis and J.G. Bartzis, 2010b: Evaluation of dispersion models DIPCOT and RIMPUFF used in decision support systems for nuclear and radiological emergency response. Proceedings of the 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, pp. 143-147.
- Andronopoulos, S., S. Davakis and J. Bartzis, 2009: RODOS DIPCOT model description and evaluation. RODOS report RODOS(RA)-TN(09)-01 . – 27p. (available at www.rodos.fzk.de)
- Drews M., et al., 2002: Measurements of plume geometry and Argon-41 radiation field at the BR1 reactor in Mol, Belgium. Report of NKS project NKS/BOK-1, ISBN 87-7893-109-6. Available from the NKS Secretariat, <u>www.nks.org</u>.
- IMSL MATH/LIBRARY User's Manual, 1987: Vol 1-3. (QA76.73 in NIST Gaithersburg Research Information Center, Admin E-120) IMSL Inc., Houston, TX.
- Raskob W., 2007: European approach to nuclear and radiological emergency management and rehabilitation strategies (EURANOS). Kerntechnik 72 (4) 172-175.
- Tsiouri, V., I. Kovalets, S. Andronopoulos and J. Bartzis, 2011: Development and first tests of a data assimilation algorithm in a Lagrangian puff atmospheric dispersion model. *International Journal of Environment And Pollution* (44), 147-155
- Tsiouri, V., Kovalets I., Andronopoulos S. and J. Bartzis, 2012: Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model. Radiation Protection Dosimetry, Vol. 148 (1), 34-44.
- US Nuclear Regulatory Commission, 1990: Analysis of CDF from Internal Events: Expert Judgment. Report NUREG/CR-4550, vol. 2, Washington, DC, April 1990.