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H I G H L I G H T S  

• Ensemble Iterative Source Inversion Method (EISIM) was developed. 
• Uncertainties in source term parameters and meteorological data were taken into account. 
• Emission inventories of 137Cs resulting from wildfires in Chernobyl Exclusion Zone were estimated. 
• Contribution of emissions resulting from dust storm was evaluated.  
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A B S T R A C T   

The emission inventories of cesium-137 resulting from the wildfires in the Chernobyl Exclusion Zone (3–24 April 
2020) and from the dust storm (16–17 April 2020), which resuspended contaminated ash, were estimated using 
inverse modeling. The goal of this work was to take into account uncertainties of inexactly known source term 
and meteorological input data for evaluation of emission inventories and their confidence limits, by developing 
Ensemble Iterative Source Inversion Method (EISIM). A set of source receptor matrices (SRMs) was calculated 
using FLEXPART atmospheric transport code with varying source term parameters (size distribution of emitted 
particles, height distribution of emissions) and meteorological input data. The covariance matrix of model errors 
was estimated by ensemble averaging of model results obtained after multiplication of the pre-calculated SRMs 
by the estimated emission inventories at the current iteration step. The emission inventories at each iteration step 
were evaluated for each of the ensemble members by solving the conventional variational source inversion 
problem. With iterations, the variance of model error was reduced by an order of magnitude. The estimated total 
emission of 137Cs from wildfires was 448 GBq, close to the first guess estimation. By using emission inventories 
within the obtained confidence limits (from 39 to 1530 GBq), different combinations of source term parameters 
and input meteorological data, FLEXPART could fit observations with a correlation coefficient of more than 0.6 
and a normalized mean squared error of less than 10. The obtained estimate of the total emission resulting from 
the wind resuspension during the dust storm was 27 GBq. The respective estimated confidence interval was from 
3 to 93 GBq. By analyzing model error statistics, some of the source term parameters could be reliably evaluated. 
The fraction of the fine particles (0.25 μm) in total emissions Wsf(0.25)≈0.1 and the fraction of emission below a 
bottom height of convective plume Wh(1)≈0.5.   

1. Introduction 

Source term estimation (STE) methods are important tools used for 
evaluation of emission inventories following accidental releases of 

hazardous pollutants in the atmosphere (Enting, 2002). The common 
framework to accomplish this task includes an atmospheric dispersion 
model (ADM) to evaluate concentrations of pollutant in places and at 
times of measurements and a minimization procedure to find an optimal 
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estimate of emission inventories that minimizes deviation of simulated 
values from the respective measurements. However, different STE 
problems can have specific challenges that require special consider
ations for development of STE algorithms. For example, results of at
mospheric transport can be sensitive to meteorological conditions, and 
input parameters of atmospheric transport models can be poorly known. 
So those details are to be accounted for by STE methods. Proper 
consideration of model uncertainties caused by errors in meteorological 
input data and source term parameters, namely size distribution of 
emitted particles and height distribution of the release, requires 
combining STE methodologies with ensemble data assimilation 
methods, such as Evensen (2009), Zhang et al. (2015), Zheng et al. 
(2007). One example of a problem that requires advanced STE methods 
is estimation of emission inventories resulting from wildfires in radio
actively contaminated territories. Some of the complexities related to 
such events are listed below. Existing estimates of emission factor of 
radionuclide emissions during wildfires differ considerably, as reviewed 
by Ager et al. (2019). Even though the dynamics of wildfire areas is 
usually well known from the satellite data, the dynamics of the ‘burn 
factor’, a fraction of the burned fuel relative to its total amount on the 
territory of fire, is usually poorly known. This additionally complicates 
the STE task as mentioned by Kovalets and de With (2020). Un
certainties in size distribution of emitted radioactive aerosols and height 
distribution of the emission rates are significant. 

All above-mentioned complexities were present in the simulation 
studies of a recent case of wildfire in the Chernobyl Exclusion Zone 
(ChEZ) in April 2020, which appeared to be the biggest wildfire in the 
history of ChEZ (Masson et al., 2021). Several studies of this extreme 
wildfire used different prior estimations of emission inventories, 
different assumptions regarding emission heights and size distribution of 
particles, etc (Masson et al., 2021; Evangeliou and Eckhardt, 2020; 
Talerko et al., 2021a; De Meutter et al., 2021; Baró et al., 2021; Protsak 
et al., 2020). An additional unique feature of this event was that on 
16–17 April 2020 the wildfire in ChEZ was accompanied by a dust storm 
(Savenets et al., 2020 Talerko et al., 2021a, 2021b). The dust storm lead 
to additional emissions of radionuclides, which were not taken into 
account in STE studies related to wildfires in ChEZ. Because of all 
mentioned complexities, significant deviations between different esti
mates of emissions exist, especially for the period of the dust storm 
(16–17 April) and for the last days of the wildfire (a more detailed re
view of previous estimates is presented in the text below). Therefore, 
this paper aims at taking into account uncertainties in the distribution of 
emitted particles, height distribution of releases, and meteorological 
input data in the STE process by developing an ensemble source inver
sion methodology and using it for quantification of emission inventories 
resulting from wildfires and dust storm in ChEZ in April 2020. 

In the following, the paper first presents description of the wildfire in 
ChEZ in April 2020 and the relevant measurement data, together with a 
brief review of the previous STE studies (Section 2). The developed 
ensemble iterative source inversion method is then presented in Section 
3. Section 4 presents results of the application of the developed STE 
method to the simulation of the wildfire event in ChEZ in April 2020. 

2. Description of wildfires in ChEZ in April 2020 

2.1. A brief review of the event 

The biggest in the history of ChEZ wildfire started on April 3, 2020 
(Talerko et al., 2021a). The intense period of the wildfire lasted more 
than two weeks and engulfed more than 40,000 ha of forests and 
grasslands in ChEZ (Talerko et al., 2021a). At the same time, wildfires 
happened outside ChEZ in the northern and northwestern parts of 
Ukraine, in Kyiv and Zhytomyr regions. On April 13, 2020, the wildfire 
was very close to the industrial site of Chernobyl NPP and spread on the 
highly contaminated territories of the ‘Red Forest’. Emissions of radio
nuclides during the wildfire lead to an increase in airborne 

concentration of radionuclides in ChEZ by 1–4 orders of magnitude. In 
parts of Ukraine outside ChEZ, concentration of radionuclides also 
increased considerably. For example, the maximum detected daily 
average volume concentration of cesium-137 in Kyiv (700 μBq⋅m− 3, 
reported on 11 April) exceeded background values more than 100 times, 
albeit this value was still about 1000 times less than regulatory 
permissible 0.8 Bq⋅m− 3, according to Ukrainian radiation safety regu
lations (NRBU, 1997). Radionuclides emitted by wildfires in ChEZ were 
also detected in many European countries (Masson et al., 2021). For 
example, weekly average values of the 137Cs volume activity concen
tration detected in northeastern Germany and southeastern France were 
several times larger than the typical background in the respective areas 
(Masson et al., 2021). 

In addition to the anthropogenic factor, extremely dry meteorolog
ical conditions in the preceding few months contributed to big wildfires, 
which were reviewed in a more detail by Talerko et al. (2021a). Ac
cording to the last measurements in Chernobyl before 3 April, precipi
tation of moderate intensity (more than 3 mm/day) happened on March 
10, 2020. In the preceding few weeks before wildfires, the dry sunny 
weather with air temperatures up to 20◦С in the daytime alternated with 
frosts at night, when air temperatures dropped down to -7◦С. The fire 
danger was characterized as ‘an extreme fire hazard’ according to Nes
terov’s index, which is officially used in Ukraine for fire hazard classi
fication (Eastaugh and Hasenauer, 2014). On 14 April, due to a cold 
front, there were rains in northwestern and north-central Ukraine, 
including ChEZ. This, together with the efforts of firefighters, lead to a 
temporary stop of fires during the next 2 days. However, on 16 April, 
strong wind was observed in the whole northern Ukraine. Meteorolog
ical stations in Kyiv and Rivne detected wind gusts up to 19 and 20 m s− 1 

respectively. This meteorological situation lead to renewal of wildfires 
in ChEZ that lasted until approximately 23 April. The strong winds also 
lead to powerful dust storms over a large part of Ukraine, including 
Rivne, Zhytomyr, and Kyiv regions (Talerko et al., 2021a, 2021b; 
Savenets et al., 2020). Due to the dust storm, daily average concentra
tions of PM2.5, in particular in Kyiv, in the period of 16–18 April 2020 
exceeded permissible values (25 μg m− 3) up to 6 times (Talerko et al., 
2021a). On other days of April 2020, even when wildfires were strong 
and the wind was blowing from ChEZ to Kyiv, concentrations of PM2.5 
in Kyiv were much lower than during the dust storm. Under normal 
conditions, ChEZ is covered by vegetation, therefore, even high wind 
usually does not lead to intense wind resuspension of deposited radio
active materials. In contrast, wind lift of radioactivity from the confla
gration territories can be large, especially during or immediately after 
wildfires, when newly formed ash is not yet mixed with the soil by 
mechanical mixing, wet removal, and chemical processes. Therefore, it 
seems that the intense resuspension of radionuclides on 16–17 April 
resulted from the compound extreme event of simultaneous wildfires 
and dust storm. 

2.2. Previous STE studies 

Estimation of emission inventories of radioactivity resulting from 
wildfires in ChEZ started during the wildfires (IRSN, 2020; Protsak et al., 
2020). Later, more detailed studies appeared (Masson et al., 2021; 
Evangeliou and Eckhardt, 2020; Talerko et al., 2021a, De Meutter et al., 
2021, Baró et al., 2021). Three main approaches to quantify emissions 
were used in different studies: a) estimating the area of fires with the 
help of satellite data and then using the emission factor to calculate 
emitted inventories (Protsak et al., 2020, 2022); b) calculating emissions 
by inverse simulation without a priori information on the emitted in
ventories during wildfires (Masson et al., 2021, Baró et al., 2021); c) 
combining approaches 1) and 2) when the estimates obtained by a) were 
adapted to better fit calculated concentrations to measurements 
(Evangeliou and Eckhardt, 2020; Talerko et al., 2021a; De Meutter et al., 
2021). The difficulty of studies of type a) is that for the correct calcu
lation of emissions by this method it is necessary to evaluate percentage 
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of biomass burnout, in addition to the area of wildfires (Kovalets and de 
With, 2020). The most rigorous methods of this type require even more 
data, namely specific activities of radionuclides in different compart
ments of the burnt biomass, together with the corresponding emission 
fractions (Protsak et al., 2022). Estimates by method b) are sensitive to 
the amount and accuracy of measurement data due to poor conditioning 
of the inverse problem (Enting, 2002). In most countries, levels of the 
observed 137Cs volume concentrations were only 2–3 times higher than 
the average annual background values. The average daily background 
concentrations could fluctuate several times around the average values. 
Therefore, the usefulness of such measurements in solving the inverse 
problem is limited, because their “representative” error is relatively 
large. The most general way to estimate emissions is method c), but the 
use of inverse modeling methods requires adequate estimates of model 
errors and the first guess (prior) estimation of the solution. These model 
errors are the result of errors in the meteorological input data, physical 
assumptions of the model, assumptions about the size composition of 
particles, emission heights, and so on. Differences in these parameters 
lead to significant differences in estimates of emissions. For example, 
even estimates of the total emissions for the entire period of the fire, 
obtained in various studies, differ from 200 to 1800 GBq (Masson et al., 
2021). Estimates of daily emissions can differ even more (Fig. 1). 

None of the above publications studied the impact of these factors on 
estimates of emissions. An additional difficulty in the quantification of 
emissions during the event of April 2020 was combination of emissions 
from wildfires and emissions from the raised radioactive dust, in the 
areas where wildfires previously occurred. Except the work of Таlerko 
et al. (2021b), dust storm, as a separate mechanism for the release of 
radioactive ash, was not considered. For some days at the end of the 
wildfires (20 April, 23 April), there are also significant discrepancies in 
emission estimates, probably due to insufficient measurements, as the 
atmospheric transport was mainly in the eastern direction, where there 
are very few measurements. 

2.3. Measurement data used in this study 

The largest and most representative dataset of radiological mea
surements during wildfires in ChEZ in April 2020 was published recently 
by Masson et al. (2021). This dataset contains about 1000 measurements 
of 137Cs concentrations in air collected in more than 20 countries, 
including Ukraine. The measured concentrations are characterized by 
large variability from about 0.02 to 9000 μBq⋅m− 3. However, outside 
ChEZ, the maximum concentration was much smaller (700 μBq⋅m− 3). 
The available ‘no detection’ measurements also varied largely by the 
lower detectable limit - from 0.1 to 200 μBq⋅m− 3. The measurement 
interval of measurements varied from 1 to 30 days. For most of the 
observations, measurement error was reported. The median value of the 

relative measurement error calculated from all such measurements was 
16%. 

For source term estimation, only those measurements were used for 
which the start and end dates were within the simulation period (from 3 
April to April 27, 2020). Measurements within ChEZ were excluded 
because simplified source parameterization described below does not 
allow for representation of time histories of concentrations close to the 
areas of wildfires. In general, 454 concentration measurements were 
used for the STE study in this work. It is important to evaluate back
ground concentrations of 137Cs at different stations for the solution of 
the inverse problem. For many stations, Masson et al. (2021) presented 
measurements collected before and after the wildfires that could be used 
for that purpose. In this work, if for a station there existed measurements 
unaffected by the wildfires (i.e. with the final date before April 3, 2020 
or with the start date after April 27, 2020), the background concentra
tion was derived from such measurements. For the other stations, the 
background values were based on the literature review. If there was no 
relevant data in the published literature, the minimum measured con
centrations during the period of measurements were used as background 
values. Details of the definition of background values are provided in the 
Supplement. 

Although estimation of locations and areas of the wildfires, as well as 
the first guess of emissions in this study, are largely based on the pre
vious study (Talerko et al., 2021a), for some dates (21–23 April) pa
rameters of the wildfires had to be additionally evaluated. As in the 
previous studies, satellite-based data provided by NASA (2020) was used 
for that purpose. The data in the Atlas of radioactive contamination of 
Ukraine (http://radatlas.isgeo.com.ua/) was used for evaluation of 
contamination of the territories where wildfires took place. More details 
on the estimation of parameters of the releases are provided in the 
sections below. 

3. Setup of the atmospheric dispersion model 

3.1. Basic setup of FLEXPART ADM 

FLEXPART is a Lagrangian atmospheric dispersion model which 
solves stochastic equations of particles’ movement in the atmosphere 
(Pisso et al., 2019; Stohl et al., 2005). The average wind components are 
obtained from the numerical weather prediction models, while sto
chastic components of the wind are internally calculated by solving the 
Langevin equation. To do so, a range of micrometeorological parame
ters, such as variances of wind fluctuations and others are parameterized 
using state-of-art theories of the planetary boundary layer. Wet and dry 
depositions are calculated by using known parameterizations and taking 
into account size distribution of particles, precipitation intensity, land 
use categories, etc. The available physical parameterizations and tech
nical details of the modeling methodology are described in the works 
Pisso et al. (2019); Stohl et al. (1998, 2005); Stohl and Thomson (1999), 
and in the documentation available on the official FLEXPART web site: 
https://www.flexpart.eu. 

In this work, FLEXPART version 10.4 was used (Pisso et al., 2019). 
This model can use meteorological data provided by operational ver
sions of the numerical weather prediction system of ECMWF and the 
Global Forecasting System (GFS) of the US National Centre of Environ
mental Prediction (NCEP). In this work, we used final analysis data of 
GFS with 0.5 deg. spatial resolution and 6 h time resolution, as they are 
available from the link https://www.ncei.noaa.gov/data/global-forecas 
t-system/access/grid-004-0.5-degree/analysis. For investigation of the 
sensitivity of the obtained source term estimations to errors in the 
meteorological fields, we used analysis data of the Global Ensemble 
Forecasting System (GEFS) also operated by NCEP (https://www.ncei. 
noaa.gov/products/weather-climate-models/global-ensemble-forecast, 
selection « GEFS, 21-Member, 003 (1◦) | 01Jan2008–Present»). This 
system integrates 21 forecast realizations per analysis time. Output 
meteorological fields calculated in each realization are provided with 1 

Fig. 1. Comparison of estimates of daily emissions of 137Cs during wildfires in 
ChEZ from different works: ‘Masson’ – estimates by Masson et al. (2021), 
‘Talerko’ – estimates by Talerko et al. (2021a), ‘Evangeliou’ – estimates by 
Evangeliou and Eckhardt (2020), averaged by Talerko et al. (2021a), ‘FRP’ - 
estimates in this work obtained by processing satellite data as described in 
section 3.2. 
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deg. spatial resolution and 6 h time resolution in GRIB2 files similar to 
the output data of GFS. However, additional conversion was necessary 
to enable FLEXPART to run on output files of GEFS. The converted files 
were created with the aid of the wgrib2 utility (https://www.cpc.ncep. 
noaa.gov/products/wesley/wgrib2/). The meteorological fields read 
from GEFS files were written in the converted files in the same order as 
they were present in GFS files. At analysis times, GEFS did not provide 
precipitation intensities necessary for FLEXPART. Therefore, for each 
analysis time X, precipitation intensities were taken from a 6-hr forecast 
initialized at the previous analysis time, valid at X-6 hrs. The meteoro
logical variables at pressure levels less than 10 mb were not available in 
GEFS files. Therefore, in the converted files, data from GFS final analysis 
files at pressure levels less than 10 mb was added. 

The calculations were performed for the time period from April 3, 
2020, 00 h to April 27, 2020, 00 h. The computational data was stored 
on the grid with 0.1 deg spatial resolution and 1-h time resolution. The 
spatial extent of the grid was defined to cover the measurements used in 
the STE procedure. The coordinates of the lower-left corner of the grid 
were: 0 deg. W, 37.8 deg. N and the number of nodes was 400 х 322. 
Physical options were defined to take into account effects of the subgrid 
variability of the planetary boundary layer (LSUBGRID = 1) and con
vection (LCONVECTION = 1). Parameters related to size distribution are 
described below. 

3.2. Parameters of emissions from the wildfires 

The first guess (prior) estimates of emission inventories of 137Cs, 
together with coordinates and areas of emission sources, were taken in 
this work from Talerko et al. (2021a). Because estimates in Talerko et al. 
(2021a) are available only until 20 April, for estimation of emissions 
during 21–23 April, fire products from the Moderate Resolution Imaging 
Spectroradiometer (MODIS, https://firms.modaps.eosdis.nasa.gov/ac 
tive_fire) were used. In particular, MODIS data contains fire radiative 
power (FRP, MWt) of each pixel. According to Talerko et al. (2021a), the 
emission inventory can be evaluated from the FRP data using formula 

Q=Cr⋅D⋅FRE = Cr⋅D⋅
∫τ

0

FRP(t)dt. (1) 

Here D[Bq⋅m− 2] is the inventory of radionuclides in the regions 

covered by wildfires, FRE is the total amount of energy released by 
wildfires during the considered time period, characterized by duration τ, 
and Cr = 9.5⋅10− 4 m2⋅MJ− 1 is coefficient evaluated by Talerko et al. 
(2021a). The emission inventories were evaluated from equation (1) for 
the whole time period of wildfires (Fig. 1, ‘FRP’). As expected, for the 
period 3–20 April, the ‘FRP’ estimates are consistent with the estimates 
in Talerko et al. (2021a). The estimates obtained using formula (1) for 
the period 21–23 April were used as first guess estimates for the 
respective time period. Locations of centers of emission areas used in the 
simulation are shown in Fig. 2, while the details of the first guess esti
mation of the emission inventories, locations, and areas of the wildfires 
are provided in Supplement, Table S2. 

Regarding parameters of size distribution of emitted aerosols, 
Evangeliou and Eckhardt (2020) assumed that 20% of release consisted 
of particles with aerodynamic diameter μd = 0.25 μm, 20% of release 
consisted of particles with μd = 8 μm and the rest were particles with μd 
= 16 μm. The geometric standard deviation was set: σg = 1.1 and the 
same value was used in this study. In a laboratory study by Hao et al. 
(2018), it was estimated that from 0 to 12% of release was transported 
on particles with an aerodynamic diameter less than 2.5 μm, while the 
rest was on particles larger than 10 μm. As in the mentioned data, in our 
work, the release consisted of particles of 3 categories, with the values of 
μd: 0.25, 8, and 16 μm. For the particles with μd = 0.25 μm, two alter
native values for their relative fraction were used: Wsf(0.25) ∈ {0.1, 0.2}, 
10% as in Hao et al. (2018) or 20% as in Evangeliou and Eckhardt 
(2020). For particles with μd = 8 μm, two alternative values were also 
used for their relative fraction: Wsf(8) ∈ {0., 0.2}, 0% as in Hao et al. 
(2018) or 20% as in Evangeliou and Eckhardt (2020). For each combi
nation of Wsf(0.25) and Wsf(0.25), the rest was assumed to be particles with 
aerodynamic diameter μd = 16 μm. Therefore, the set of used values for 
fractions of particles with different sizes could be formalized by the 
following formula: 

Wsf (0.25) ∈ {0.1, 0.2}, Wsf (8) ∈ {0., 0.2}
Wsf (16) = 1 −

(
Wsf (0.25) + Wsf (8)

)
.

(2) 

For setting parameters of height distribution, we used data from the 
Global Fire Assimilation System GFAS (Rémy et al., 2017; Di Giuseppe 
et al., 2018) available from Copernicus Atmosphere Monitoring Service 
(CAMS) Products (https://apps.ecmwf.int/datasets/data/cams-gfas/). 
The bottom and top heights of convective plumes formed by the 

Fig. 2. Locations of sources F0-39 represent wildfires in the simulation study; sources D1-3 represent emissions due to wind resuspension during dust storms, they are 
shown together with their lateral boundaries (© Google Earth). 
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wildfires were estimated by GFAS and available at 0.1 deg. spatial res
olution and 24 h time resolution (GFAS, 2022). Therefore, for each of the 
wildfire sources considered in this work (Supplement, Table S2), the top 
and upper heights of convective plumes ztop, zbot were set equal to the 
corresponding values in the nearest node of GFAS (Fig. 3). In calcula
tions, every wildfire source was split vertically into two parts: 1) bottom 
part, 0 < z ≤ zbot and 2) upper part, zbot < z ≤ ztop. The fraction of release 
in the bottom part of the source Wh1 was estimated from 0.1 to 0.5 ac
cording to data presented by Sofiev et al. (2013). Hence in this work, we 
used 3 alternative values: Wh1 ∈ {0.1,0.25,0.5}. The rest of the release 
was assumed from the upper part of the source: Wh2 = 1 − Wh1. 

3.3. Parameters of emissions from the dust storm 

Таlerko et al. (2021b) presented estimates of emissions of radioactive 
ash from the territories of the recent wildfires during the dust storm. The 
flux of radionuclides due to wind resuspension Qd [Bq⋅m− 2s− 1] was 
parameterized by the formula Qd = qs⋅Fd, where qs [Bq⋅kg− 1] was the 
specific activity of radioactive ash and Fd [kg⋅m− 2s− 1] was the mass flux 
of dust proportional to cubic power of friction velocity according to 
parameterization by Vautard et al. (2005). The estimate for specific 
activity qs of radioactive ash was obtained by comparing formula (1) for 
radionuclides flux with known parameterization of mass flux Fw during 
wildfires (Ichoku and Kaufman, 2005): 

Fw =Ce⋅D⋅FRE. (3) 

By dividing Eq. (3) by (1) and using estimate of Ce = 0.075 kg⋅MJ− 1 

from Ichoku and Kaufman (2005), an estimate for specific activity was 
obtained: 

qs =(Cr /Ce)D ≈ 0.0137D. (4) 

Then flux of radionuclides due to wind resuspension during the dust 
storm was determined. The total estimated released inventory of 137Cs 
during 16–17 April was 162 GBq, and about 90% of this activity was 
emitted on 16 April, when wind speed was the greatest. 

In this work, first guess estimation of emissions created by dust storm 
was obtained by processing data presented by Таlerko et al. (2021b). 
Twenty emission sources considered by Таlerko et al. (2021b) were 
aggregated in this work into 3 sources (Fig. 2), emitting in total the same 
amount of radioactivity (162 GBq), of which 90% was emitted on 16 
April (Supplement, Table S3). 

Parameters of the size distribution of particles emitted due to wind 
resuspension were discussed by Таlerko et al. (2021b), where it was 
assumed that the fraction of particles with μd = 1 μm, Wsd(1) = 0.4, while 

the rest of the radioаctivity was transported by particles with μd = 10 
μm. However, based on measurement data published in the same work, 
an alternative value of Wsd(1) could be proposed: Wsd(1) = 0.1. Finally, 
Wagenbrenner et al. (2013) studied dust emissions from the territories 
previously covered by the wildfires, and according to their data, the 
value of Wsd(1) = 0.6 could also be justified. Therefore, all three 
abovementioned values were used in this work as alternative options: 
Wsd(1) ∈ {0.1, 0.4, 0.6}. Similar to Таlerko et al. (2021b), the rest of the 
radioаctivity was assumed to come from particles with μd = 10 μm: 
Wsd(10) = 1 − Wsd(1). 

4. Source term estimation method 

4.1. STE as a minimization problem 

STE can be considered as the data assimilation problem (Daley, 
1991), in which minimization of the following cost function is per
formed (Enting, 2002): 

J
(

q
)

=

⎛

⎝G q − y

⎞

⎠

T⎛

⎝F − 1

⎞

⎠

⎛

⎝G q − y

⎞

⎠

+

(

q − q
B

)T
⎛

⎝B − 1

⎞

⎠

(

q − q
B

)

. (5) 

Here, y ∈ RNO is the vector of measurements, N0 is the number of 
measurements, q ∈ RNS is the vector of unknown emission inventories 
from all NS sources (Tables S2 and S3 in Supplement), q

B
∈ RNS is the 

vector of the corresponding first guess (prior) estimations of emission 
inventories, and B ∈ RNS×NS is the covariance matrix of errors in the first 
guess estimation. Source receptor matrix (SRM) G ∈ RNO×NS is calculated 
by the model, establishing connection between emission inventories and 
calculated concentrations in the points and at the times of measure
ments. Matrix F = M + O , F ,M ,O ∈ RNO×NO is the sum of covariance 
matrices of model and observational errors M and O respectively. 

As follows from Bayes’ theorem (Enting et al., 2002), solution that 
minimizes cost function (5) corresponds to the maximum in posterior 
probability distribution function of the unknown vector q , provided that 
probability distributions of errors of prior estimation q B, observations, 
and model errors are all Gaussian. In the context of this study, it is 
especially important to note that the covariance matrix of model errors 
M represents errors, provided that vector q is known exactly. Therefore, 
it represents errors introduced by different input parameters of the STE 

Fig. 3. Heights of the bottom, zbot (black circles), and upper ztop (rhombus), boundaries of convective plumes for each of the wildfire sources considered in the study 
and derived from CAMS GFAS data. Data labels indicate days of April 2020, at which the corresponding sources were active. 
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problem, such as meteorological variables etc, but not of the unknown 
vector q to be estimated by solving an inverse problem. Since in reality 
vector q is not known, matrix M is usually somehow parameterized. In 
this work, we propose to use an ensemble approach for calculation of the 
matrix M (Evensen, 2009): 

M
(

q
)

=
1

Ne

∑Ne

m=1

(

c m − 〈c 〉
)(

c m − 〈c 〉
)T

c m = G
m

q , 1 ≤ m ≤ Ne

〈c 〉 =
1

Ne

∑Ne

m=1
c m

(6) 

Here, column vectors c m are calculated with different model re
alizations obtained using different meteorological input datasets and 
different source term parameters, and Ne is the number of realizations (i. 
e. the size of the ensemble). Different model realizations are represented 
by the corresponding SRM G

m
, and matrix M is calculated by ensemble 

averaging. As it is readily seen from equation (6), matrix M and hence 

matrix F , depend on the unknown vector q : F = F
(

q
)

and thus 

minimization problem (5) becomes a nonlinear regression:   

Here, index m denotes that the minimization problem is solved 
separately for each SRM G m corresponding to a specific m-th model 
realization. In this work, we complemented minimization problem (7) 
with conditions of positive solution and zero systematic error. These 
conditions and the second regularization term in cost function (7) hel
ped avoid overfitting: 

∑NO

i=1
cm,i =

∑NO

i=1

∑NS

j=1
gm,ijqm,j =

∑NO

i=1
yi

q
m
> 0

(8) 

Here gm,ij are elements of the matrix G
m
. 

After solving the nonlinear regression problems (7),(8) for every 
index m, the ensemble of the emission inventories was obtained. Con
fidence intervals of the estimated emission inventories were assessed by 
processing the obtained ensemble of estimates. For every source, the 2.5- 
th and 97.5-th percentiles of the values in the vector of the obtained 
emission estimates were calculated, yielding respectively lower and 
upper confidence limits of the respective emissions. 

4.2. Covariance matrices 

As it was mentioned above, the covariance matrix of model errors is 
calculated by processing ensemble of model runs using equation (6). 
This ensemble consists of model runs performed using data of each of the 
21 members of the GEFS meteorological system (section 3.1) and using 
the final analysis dataset of the GFS system (i.e. in total NM = 22 
meteorological datasets). Runs with each meteorological dataset are 
combined with each of the combinations of parameters Wsf(0.25),Wsf(8), 
Wh(1) Wsd(1), discussed in sections 3.2-3.3. In total, there are Np = 2 × 2 
× 3 × 3 = 36 combinations of those parameters and, therefore, the 
number of ensemble members Ne=NM × Np = 22 × 36 = 792. 

The covariance matrix of measurement errors O is set to be diagonal, 
and its diagonal elements (variances) are equal to a sum of squared 
instrumental error and background value θ for the corresponding sta
tion: σ2

o,i = σ2
d,i + θ2

i . In the cases where instrumental error was not re
ported, it was set to 16% of the corresponding measurement value (here 
the median value of all reported relative measurement errors mentioned 
in section 2.3 was used). In cases when the measurement value was less 
than the lower detectable limit (LDL), the instrumental error σd was set 
to σd = LDL, while the measurement value was set to the background 
value at the corresponding station. 

The covariance matrix of the errors in the first guess approximation 
B was also set to be diagonal. In operational air quality prediction sys
tems that are used for solving STE problems, it is convenient to set 
corresponding dispersion parameters proportional to the values of first 
guess emission rates with the coefficient of proportionality ~1 
(Winiarek et al., 2011; Kovalets et al., 2019). Therefore, in this study, 
the diagonal elements of matrix B were set accordingly: σ2

B,i = q2
B,i. 

4.3. Minimization procedure 

The nonlinear regression problem (7)-(8) was solved in this work by 
iteration procedure:  

where s was the iteration number and the total number of iterations was 
NIter. At each iteration step s, the covariance matrix F was calculated 
using solution obtained at the previous step, while at the zeroth iteration 
step q 0

m it was set to q 0
m = q B, and thus: 

F
(

q 0
m

)

=M 0 + O (10) 

Here, M 0 is defined as M 0 = M
(

q
B

)

. 

Jm

(

q
m

)

=

⎛

⎝G
m

q
m
− y

⎞

⎠

T⎛

⎝F
(

q
m

)− 1
⎞

⎠

⎛

⎝G
m

q
m
− y

⎞

⎠+

(

q
m
− q

B

)T
⎛

⎝B − 1

⎞

⎠

(

q
m
− q

B

)

→
q

m

min

1 ≤ m ≤ Ne

(7)   

Jm =

⎛

⎝G
m

q s+1
m

− y

⎞

⎠

T⎛

⎝F
(

q s
m

)− 1
⎞

⎠

⎛

⎝G
m

q s+1
m

− y

⎞

⎠+

(

q s+1
m

− q
B

)T
⎛

⎝B − 1

⎞

⎠

(

q s+1
m

− q
B

)

→
q s+1

m

min

1 ≤ m ≤ Ne, 0 ≤ s ≤ NIter

(9)   
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Then, at each iteration, linear regression problem (9) with re
strictions in the form of relationships (8) was solved for the unknown 
q s+1

m . The method of solving linear regression problem is described in 
Supplement, section S3. The flowchart of the described source inversion 
method is shown in Fig. 4. Preliminary testing of the algorithm had 
shown that usually 50 iterations were sufficient for convergence 
(Fig. 5a). Therefore, in the next applications, the number of iterations 
was set to NIter = 50. The resulting solution obtained after the end of the 
iteration cycle was further denoted as q m = q Niter

m . 
As it follows from Fig. 5b, the norm of the main diagonal of the model 

error covariance matrix M estimated by ensemble averaging using 
equation (6) not only converges to a stationary value, but also decreases 
by a factor of 10. Therefore, the algorithm can find a solution of the STE 
problem that reduces the variance of differences between simulated 
results induced by variable meteorological fields and parameters of the 
source term. 

To our knowledge, such an iterative STE method based on the pro
cessing of the ensemble of runs has not been used previously. In the 
studies Zhang et al. (2014), Zhang et al. (2015), covariance matrix of 
model errors was also defined by iterations to improve the overall 
convergence of the ensemble Kalman filtering method (EnKF). Despite 
the usage of an ensemble of model realizations, our method cannot be 
considered EnKF, because time is not explicitly present in its formula
tion. Therefore, we simply denote it as Ensemble Iterative Source 
Inversion Method (EISIM). 

4.4. Computational details 

Parameter estimation problems in which the uncertainty of the 

model is included in the methodology are usually time-consuming. In 
our approach, the main computational efforts were spent on calculations 
of the elements of source receptor matrices by running the FLEXPART 
model. The total number of FLEXPART runs for calculation of SRMs 
related to wildfires was NF = 3 × NS × NM = 3 × 40 × 22 = 2640. Each 
FLEXPART run was performed for one of the 40⋅sources described in 
section 3.1 (split vertically into two sub-sources), for one of three size 
fractions of emitted aerosols (0.25, 8, or 16 μm), and one of the 22 
meteorological ensemble members. Simulations were performed with 
reference (‘unit’) release rate and thus calculations of elements of SRMs 
for particular values of size fractions of emitted aerosols and fractions of 
emissions from different heights could be easily recalculated. The 
number of particles used to represent a single source, lasting 24 h, was 
set to 2⋅105. Calculations were performed on a personal computer with 
72 computing cores Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz and on 
a 48-computing-core Intel Xeon Processor (Cascadelake) CPU @ 2.095 
GHz of the Cloud Computing Platform of the Ukrainian National Grid 
Infrastructure. The parallelization of computations was implemented by 
distributing separate FLEXPART runs on different computational cores. 
The time needed for a single FLEXPART run varied from 3 to 25 h 
depending on the start time of the source and the size of the particles (for 
coarser particles calculations were faster due to rapid deposition of 
particles). The total time needed to execute all necessary FLEXPART 
runs related to wildfires on the computational infrastructure described 
above was 14 days. The time needed to execute FLEXPART runs repre
senting dust storm required 1 additional day because emissions created 
by dust storm were represented by only two additional sources. The 
FLEXPART output files were processed before performing the minimi
zation procedure. Processing included extraction of output concentra
tions, their spatial interpolation to the points of measurements, time 

Fig. 4. Flowchart of the ensemble iterative source inversion method (EISIM).  
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integration following measurements time intervals, and saving the 
resulting arrays in intermediate files. The processed FLEXPART data was 
then used in minimization procedure (9) that was performed on a 
Windows machine with processor Intel (R) Core (TM) i5-8400 CPU @ 
2.8 GHz, 6 Cores. The minimization problem (9) for a single ensemble 
member was solved within about 5 min. Performing runs in parallel 
using 6 computational cores, it took about 12 h to solve the minimiza
tion problem (9) for all 792 ensemble members. 

From the above it is clear that the dependence of computational 

complexity of the algorithm on the number of parameters depends first 
of all on the number of additional FLEXPART runs. For example, adding 
a new size fraction increases the computing time by a factor of 4/3, i.e. 
by 33%. However, preserving the number of size fractions, the number 
of the configurations of their relative weights Wsf(0.25),Wsf(8), Wsf(16) can 
be increased substantially without a significant increase in computa
tional time of the algorithm, because it will not require additional 
FLEXPART runs, only an increase in the number of cycles in minimiza
tion procedure (9). 

5. Results of calculations 

Ensemble of solutions of STE problem for the case of wildfires in 
ChEZ was obtained after application of procedure (9). The total 
ensemble-average daily emission inventories of 137Cs during the period 
of wildfires are shown in Fig. 6. Emissions for 21–23 April presented in 
Fig. 6 were estimated for the 3-day period and then daily emissions were 
recalculated assuming a constant emission rate. As it can be noted from 
Fig. 6, almost each day, the first guess emissions from wildfires (Fig. 6a) 
fall within the 95% confidence intervals of the obtained solutions. In 
contrast, estimate of the first guess emission due to wind resuspension 
on the first day of the dust storm (16 April) does not fall in the confi
dence interval of the respective estimated emissions. The average value 
of the estimated emission due to wind resuspension on 16 April is 23 
GBq, which is about 6 times less than the respective first guess 
estimation. 

Evaluation of individual solutions from the ensemble can be per
formed using independent metrics, such as normalized mean squared 
errors (NMSEs) and correlation coefficients r of the respective simulated 
concentrations of 137Cs, by comparing to the measurements: 

NMSEm =

(1/No)
∑No

i=1

(
cm,i − yi

)2

〈cm〉〈y〉

rm =

∑No

i=1

(
cm,i − 〈cm〉

)
(yi − 〈y〉)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑No

i=1

(
cm,i − 〈cm〉

)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑No

i=1
(yi − 〈y〉)2

√

〈cm〉 =
1

No

∑No

i=1
cm,i, 〈y〉 =

1
No

∑No

i=1
yi

(11) 

Here, as in equation (9), index m is used to denote model realization 
for which evaluation of the error statistics is performed, y represents 

Fig. 5. Example of the iteration number dependence of (a) non-dimensional 

norm of the solution 
⃦
⃦
⃦
⃦q s

m

⃦
⃦
⃦
⃦/

⃦
⃦
⃦
⃦q B

⃦
⃦
⃦
⃦ and (b) non-dimensional norm of the main 

diagonal of the model-error covariance matrix 

⃦
⃦
⃦
⃦
⃦
⃦
diag

⎛

⎝M

⎞

⎠

⃦
⃦
⃦
⃦
⃦
⃦
/

⃦
⃦
⃦
⃦
⃦
⃦
diag

⎛

⎝M 0

⎞

⎠

⃦
⃦
⃦
⃦
⃦
⃦
; the 

example is shown for model realization m = 1. 

Fig. 6. Daily emission inventories of 137Cs during the period of wildfires, obtained by averaging the ensemble of solutions (black circles) together with confidence 
intervals; first guess estimations for the same dates are shown by triangles; a) emissions resulting from wildfires; b) emissions created by wind resuspension during 
the dust storm on 16–17 April 2020. 
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observations, c represents respective concentration values calculated by 
model and the averaging is performed over the total number of mea
surements No. 

Fig. 7 presents optimized cost functions Jm (7) obtained when solving 
STE problem (9) for the respective ensemble member m, together with 
the NMSEm and rm obtained by using the corresponding solution q m. The 
statistical dependence of metrics NMSE and J is weak and their mutual 
correlation coefficient equals 0.2. The magnitude of the mutual corre
lation of r and J is even smaller and equals − 0.08. From the results 
presented in Fig. 7, it can also be noted that the degree of variation of J is 

much smaller than that for NMSE and r. While J varies from 46 to 58, i.e. 
by about 20% from the average value, the NMSE values span more than 
an order of magnitude (from NMSE≈2 to NMSE≈100), and the values of 
r change from r ≈ 0.2 to r ≈ 0.9, i.e. by a factor of 4.5. It can be 
concluded that NMSE and r can be used for independent evaluation of 
the obtained solutions even though they are obtained by comparing 
model results to the same measurements that are used for solving the 
STE problem. 

The median values of NMSE and r presented in Fig. 7 are NMSE = 9.8 
and r = 0.67, which are quite good taking into account significant un
certainties in release estimation and spatial scale of the considered 
dispersion problem (~1000 km). In particular, the abovementioned 
value of NMSE is within the reported range of errors of different atmo
spheric models applied for the conditions of the European Tracer 
Experiment ETEX with an exactly known source term (Bellasio et al., 
2012). 

For a sensitivity test, we selected from the full ensemble a subset of 
the highest quality solutions that satisfy the following criteria: 
NMSE≤10, r ≥ 0.6. This subset consisted of Ne2 = 406 members. The 
ensemble-average emissions obtained by averaging over the selected 
subset (Estimate 2) were then compared against the emissions averaged 
over the full ensemble (Estimate 1) in Fig. 8. As it can be seen from 
Fig. 8, emissions from wildfires in Estimate 2 were very close to emis
sions in Estimate 1, confirming robustness of the obtained estimates. 
Emissions due to wind resuspension for 16 April in Estimate 2 were also 
close to the respective values in Estimate 1. For 17 April, emissions in 
Estimate 2 were reduced by a factor of about 2 compared to Estimate 1. 
This sensitivity was the result of two main factors: 1) emissions due to 
wind resuspension were largely reduced on 17 April due to a decline in 
wind speed and became poorly distinguishable on the background of the 
emissions from the wildfires; 2) relatively small number of measure
ments were affected by the dust storm because of the prevailing east
ward direction of the wind. 

The total emissions according to Estimates 1 and 2 and their 

Fig. 7. Optimized cost functions J defined in (7), correlation coefficients r, and 
NMSEs (11) of model results as compared to measurements of 137Cs concen
trations; statistical indicators obtained in simulations with the emission rates 
resulting from the solution of STE problem for the respective model realiza
tion m. 

Fig. 8. Daily emission inventories of 137Cs during the period of wildfires, obtained by averaging the full ensemble of solutions (black circles, Estimate 1) and obtained 
by averaging those estimates for which the resulting model errors satisfied the following criteria: NMSE≤10, r ≥ 0.6 (open squares, Estimate 2); a) emissions formed 
by wildfires; b) emissions created by wind resuspension during the dust storm on 16–17 April 2020. 

Table 1 
Total inventories of emissions of137Cs from wildfires (3–24 April 2020) and from 
wind resuspension during the dust storm (16–17 April 2020); respective confi
dence limits are in brackets.  

Source First guess, GBq Estimate 1, GBq Estimate 2, GBq 

Wildfires 586 461 (19 ≤ Q ≤ 1590) 448 (39 ≤ Q ≤ 1530) 
Dust Storm 162 27 (3 ≤ Q ≤ 112) 21 (3 ≤ Q ≤ 93)  
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respective confidence intervals are provided in Table 1. The difference 
between the total emissions and the respective confidence intervals in 
Estimates 1 and 2 is small, confirming robustness of the obtained results. 

In order to evaluate the impact of changes in different input pa
rameters upon variations of estimated emission inventories, we calcu
lated average variations of total emissions δQφ caused by changes of the 
respective group of parameters φ with other parameters fixed. Namely, 
the values of δQwh, δQwsf, δQwsd, and δQMeteo were evaluated. Here, the 
value δQwh accounts for the impact of parameters responsible for the 
height distribution of the release (Wh(1), Wh(2)); δQwsf characterizes the 
impact of the size distribution of particles emitted from wildfires (pa
rameters Wsf(0.25) , Wsf(8), Wsf(16)); δQwsd characterizes the impact of the 
size distribution of particles emitted by wind resuspension (parameters 
Wsd(1), Wsd(10)); δQMeteo accounts for the impact of the meteorological 
input data. As is seen from the data presented in Table 2, changes in 
meteorological input data have the most significant impact on the 
variability of the total emission inventory. The corresponding relative 
value of emission variability λMeteo = δQMeteo/ΣδQφ = 0.49. Other pa
rameters cause significantly smaller variations in estimated emissions: 
λWh = 0.26 for parameters describing the height distribution of the 
release, λWsf = 0.16 for parameters related to the size distribution of 
particles emitted from the wildfires, and λWsd = 0.09 for parameters 
related to the size distribution of particles emitted by wind resuspension. 

As was mentioned in section 4.2, for each of the 22 input meteoro
logical datasets, 36 respective configurations of source term parameters, 
describing the size distribution of emitted particles and height distri
butions of wildfire emissions were applied. The obtained values of NMSE 
may be used to identify the most suitable parameter configurations. To 
do that, we present in Fig. 9 the range of obtained NMSEs for each of the 
source term parameter configurations. The variability of NMSE for a 

given configuration is created by different meteorological input data. 
The values of parameters for each configuration are provided in Sup
plement (Table S4). As can be noted from Fig. 9, the narrowest NMSE 
bands, together with the smallest minimum values of the normalized 
error, are found for the parameter configurations from 25 to 30. This 
range of configurations corresponds to the following fixed values of 
source term parameters: Wh(1) = 0.5, Wsf(0.25) = 0.1, varying other pa
rameters according to the description in section 3.3. Therefore, it can be 
concluded that parameters Wh(1), and Wsf(0.25) have dominating influ
ence on the solution of the STE problem, and the abovementioned values 
Wh(1) = 0.5, Wsf(0.25) = 0.1 can be considered most reliable estimates for 
those parameters out of the proposed values. 

Reconstruction of the space-time distributions of near-surface con
centrations during wildfires can be provided by ensemble averaging the 
calculated concentration fields in different ensemble realizations: 

ce(x, y, t) =
1

Ne2

∑Ne2

m=1
cm(x, y, t) (12) 

Table 2 
Average variations of total emissions δQφ caused by changing the input mete
orological data (‘Meteo’), parameters of height distribution of the release (‘Wh’), 
parameters describing the size distribution of particles emitted by wildfires 
(‘Wsf’), and parameters describing the size distribution of particles resulting 
from wind resuspension (‘Wsd’); parameter λφ = δQφ/ΣδQφ is the relative value 
of δQφ summed over all variations.  

Parameter Meteo Wh Wsf Wsd 

δQφ, GBq 404 216 134 74.7 
δQφ/ΣδQφ 0.49 0.26 0.16 0.09  

Fig. 9. The range of NMSEs obtained with the emission rates resulting from 
solving the STE problem, depending on the configuration of source term pa
rameters; for each configuration, the range of NMSEs is created by different 
meteorological input data sets. 

Fig. 10. Calculated concentrations in Ensemble run vs. observations; values 
less than 0.1 μBq⋅m− 3 are clipped. 

Fig. 11. Time integrated concentration of 137Cs calculated in Ensemble run for 
the whole simulation period (April 03, 2020,00 UTC - April 27, 2020, 00 UTC); 
locations of measurement stations used for solving STE problem are shown by 
symbols; isolines are shown for values 1, 10, 25, 50, 100, 200, 400, 800, 
1600 Bq⋅s⋅m− 3. 
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Here, only those ensemble members were selected that provided the 
highest quality solutions as described above (NMSE≤10, r ≥ 0.6). The 
concentration field ce(x, y, t) calculated in this way will be henceforth 
denoted as ‘Ensemble run’ or ‘Ensemble estimation’. The scatter plot of 
the calculated concentrations in the Ensemble run vs. observed values is 
provided in Fig. 10. The resulting error indicators of the concentrations 
evaluated by formula (12) are NMSE = 4.2 for normalized error and r =
0.85 for the correlation coefficient. From Fig. 10 it can be noted that the 
scatter is reduced as the observed amounts get larger. This is explained 

by the fact that as the observed concentrations become closer to the 
background, the relative impact of the respective background concen
trations on elements of the observation error covariance matrix O be
comes comparable to or greater than the impact of instrumental errors as 
described in section 4.2. Hence, larger relative deviations are allowed by 
the minimization algorithm for smaller concentrations. 

Fig. 11 presents time-integrated concentrations of 137Cs obtained in 
the Ensemble run for the whole simulation period. As it can be seen from 
this figure, the dominant direction of atmospheric transport was to the 
east, while the majority of measurements were in the western and 
central parts of Europe. The lack of measurements in the dominant di
rection of plume dispersion is one of the difficulties in solving the STE 
problem for this case. 

Fig. 12 presents concentrations of 137Cs simulated in the Ensemble 
run for 10 April when the maximum concentration was observed in Kyiv 
during the period of wildfires (700 μBq⋅m− 3). The time series of 
observed and simulated 137Cs concentrations in Kyiv are shown in 
Fig. 13. The simulated concentration for that day (547 μBq⋅m− 3) is close 
to the observed. Fig. 13 also shows observed concentrations of partic
ulate matter PM2.5 in Kyiv from April 3 to April 27, 2020. As is seen 
from the figure, on 10 April increased levels of PM2.5 were also 
observed in Kyiv, up to 200 μg m− 3. The coincidence of peaks in 137Cs 
and PM2.5 concentrations indicate that the particulate matter observed 
on 10 April also originated from the wildfires in ChEZ. 

As is seen from Fig. 13, especially high concentrations of PM2.5 were 
observed in Kyiv during the dust storm that started on April 16, 2020. 
The start of the rapid increase of 137Cs concentration in Kyiv was 
simulated in the Ensemble run practically at the same time (16 April, 

Fig. 12. The simulated distribution of ground-level concentration of 137Cs 
averaged for 24-hr period (April 10, 2020, 06 UTC - April 11, 2020, 06 UTC) 
obtained in the Ensemble run; locations of measurement stations used for 
solving the STE problem are shown by symbols; isolines are shown for values 1, 
25, 50, 100, 250, 500, 1500, 2500 μBq⋅m− 3. 

Fig. 13. a) Time series of PM2.5 concentrations in Kyiv according to mea
surement data from www.saveecobot.com; b) time series of observed (Masson 
et al., 2021) and simulated in Ensemble run concentrations of 137Cs in Kyiv. 

Fig. 14. The simulated ground-level distribution of concentration of 137Cs in 
the Ensemble run averaged for the 24 h period (April 16, 2020, 06 UTC - April 
17, 2020, 06 UTC); a) concentration created by all sources; b) concentration 
created only by wind resuspension during the dust storm; locations of mea
surement stations used for solving STE problem are shown by symbols; isolines 
are shown for values 1, 25, 50, 100, 250, 500, 1500, 2500 μBq⋅m− 3. 
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18:00 UTC) when the increase of PM2.5 was observed. However, this 
sharp increase in 137Cs concentrations dropped down according to 
Ensemble run on the morning of 17 April. The daily average concen
tration of 137Cs in Kyiv was somewhat overestimated in the Ensemble 
run: 357 μBq⋅m− 3 vs observed 236 μBq⋅m− 3 on 16 April; 197 μBq⋅m− 3 vs 
observed 114 μBq⋅m− 3 on 17 April; 156 μBq⋅m− 3 vs observed 124 
μBq⋅m− 3 on 18 April. 

If concentrations of 137Cs and PM2.5 in Kyiv are compared between 
two time periods, 10 April and 16–18 April, one can see that while on the 
one hand, PM2.5 concentrations were considerably higher during the 
dust storm that started on 16 April, on the other hand, concentrations of 
137Cs were higher on 10 April. Therefore, it can be concluded that 
particulate matter measured in Kyiv during the dust storm originated 
mostly outside ChEZ. This is also confirmed by Fig. 14, which presents 
spatial distribution of near-surface concentration of 137Cs averaged for 
the period April 16, 2020, 06 UTC -April 17, 2020, 06 UTC calculated in 
the Ensemble run. It can be seen that Kyiv is located on the rear of the 
plume and the maximum concentrations of cesium created by wildfires 
in ChEZ do not cover Kyiv. 

Instantaneous concentrations for different times from April 16 to 
April 17, 2020 are presented in Fig. 15. It can be seen that during most of 
16 April, the plume did not reach Kyiv, but by 18:00 on 16 April, it had 
turned towards Kyiv. This happened at the time when a rapid increase in 
PM2.5 concentrations was observed in Kyiv (as shown in Fig. 13). 
During the remaining time, the plume was transported towards Kyiv, but 
the intensity of emissions decreased due to a decrease in wind speed and 
therefore the concentration of 137Cs in Kyiv was reduced. At the same 
time, as shown in Fig. 13, the concentrations of PM2.5 remained high 
even on 19 April. This is explained by the fact that the dust storm 
covered practically the whole of northern Ukraine (Savenets et al., 
2020), therefore, high levels of PM2.5 were observed in Kyiv even after 
17 April when wind speeds decreased. 

Together with the concentrations of 137Cs created by all sources, 
Fig. 14 also presents concentrations created only by wind resuspension 

during the dust storm, as simulated in the Ensemble run. It is interesting 
to note that despite the fact that according to Fig. 8 emission due to wind 
resuspension on 16 April was about 2 times less than emissions due to 
the wildfires, the surface concentrations at distances up to a few hun
dred km from ChEZ were mainly created by emissions resulting from 
wind resuspension. This is explained by the fact that while emission 
from wind resuspension is created close to the Earth’s surface, emissions 
from wildfires were height distributed with the lower bottom of the 
convective plumes on 16 April at heights more than 500 m, while top 
heights reached 2500 m (Fig. 3). 

6. Discussion and conclusions 

In this work, we estimated emission inventories of 137Cs during 
wildfires in Chernobyl Exclusion Zone (3–24 April 2020) accompanied 
by dust storm (16–17 April 2020). Uncertainties in meteorological input 
data, size distribution of the emitted particles, and height distribution of 
the release were taken into account using the developed Ensemble 
Iterative Source Inversion Method (EISIM). In this method, a set of 
source receptor matrices is calculated using FLEXPART atmospheric 
transport code with varying source term parameters and input meteo
rological data. The covariance matrix of model errors is estimated by 
ensemble averaging model results obtained by multiplication of the pre- 
calculated SRMs by the estimates of emission inventories at the current 
iteration step. The emission inventories at the next iteration step are 
evaluated for each of the ensemble members by solving the conventional 
problem of minimizing a quadratic cost function that characterizes dif
ferences between calculated results and observations. Iterations are 
repeated until a stable solution is obtained for each of the ensemble 
members. During the course of the iterations, the variance of model 
error was reduced by a factor of 10 compared to the initial value. The 
result of the algorithm application is the ensemble of estimates of 
emission inventories. 

The previously published emission inventories resulting from 

Fig. 15. Concentration distributions of 137Cs near ground simulated in Ensemble run for different times: April, 16th, 06:00 (a), 12:00 (b), 18:00 (c), 20:00 (d), 24:00 
(e), April, 17th, 06:00 (f); isolines are shown for values 5, 25, 50, 100, 250, 500, 1000, 2000, 4000, 8000, 14,000 μBq⋅m− 3. 
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wildfires (Talerko et al., 2021a) and dust storm (Таlerko et al., 2021b) 
were used as first guess estimations. Simulations of cesium concentra
tions in the air were performed for the period from April 3 to April 27, 
2020. The meteorological input data from 21 realizations of the Global 
Ensemble Forecasting System (GEFS) operated by NCEP together with 
GFS final analysis data was used to represent uncertainties in model 
results caused by errors in meteorological data. The bottom and top 
heights of convective plumes were evaluated using data from the Global 
Fire Assimilation System. The fraction of emissions below the convective 
plume bottom height varied between different members of ensemble 
estimates from 0.1 to 0.5, while the rest was emitted between the plume 
bottom and top heights. The size distribution of particles emitted due to 
the wildfires was defined based on the literature review. It varied be
tween different ensemble members from 0.1 to 0.2 for fine particles 
(0.25 μm), and from 0 to 0.2 for particles of the 8 μm size. The rest of the 
release was assumed to be coarse particles (16 μm). A similar approach 
was used to represent size distribution of particles emitted due to wind 
resuspension during the dust storm: the fraction of fine particles (1 μm) 
varied from 0.1 to 0.6, while the rest of the release was assumed to 
consist of particles of 10 μm size. 

The estimated total emission of 137Cs from wildfires was close to the 
first guess estimations: 448 GBq vs. 586 GBq. However, the confidence 
interval of the emitted inventory was large: from 39 to 1530 GBq. By 
using emission inventories within the confidence interval and different 
combinations of source term parameters and input meteorological data, 
FLEXPART could fit observations with zero systematic error, correlation 
coefficient more than 0.6, and normalized mean squared error less than 
10. By analyzing model error statistics, some of the source term pa
rameters could be reliably evaluated: the fraction of the fine particles 
(0.25 μm) in the total emissions was evaluated to be ≈ 0.1 and the 
fraction of emission below a bottom height of the convective plume was 
evaluated to be ≈ 0.5. 

The obtained estimate of the total emission resulting from wind 
resuspension during the dust storm was 27 GBq. It is by a factor of 6 
smaller than the respective first guess emission (162 GBq), which did not 
fall into the estimated confidence interval (from 3 to 93 GBq). The dif
ficulty in obtaining a robust estimate of emissions resulting from wind 
resuspension is due to the following: 1) emissions were largely reduced 
on 17 April because of a decline in wind speed, as they became poorly 
distinguishable from the background of emissions from the wildfires; 2) 
relatively small number of measurements were affected by the dust 
storm, because the prevailing direction of the wind was eastward. 

By analyzing the impact of changes of different input parameters on 
estimated emission inventories, it was shown that meteorological input 
data has the most significant impact on the variability of the total 
emission inventory. The corresponding relative value of emission vari
ability is caused by different meteorological data: λMeteo = 0.49. Changes 
in other parameters cause significantly smaller variations in estimated 
emissions: λWh = 0.26 for parameters describing the height distribution 
of the release, λWsf = 0.16 for parameters related to the size distribution 
of emitted particles from the wildfires, and λWsd = 0.09 for parameters 
related to size distribution of particles emitted by wind resuspension. 

The obtained results demonstrate the need for a more in-depth future 
research regarding combination of wildfires and dust storms, especially 
for the cases when wildfires happen at radioactively contaminated ter
ritories and the contaminated ash is then re-emitted by wind resus
pension during a dust storm. 
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Rémy, S., Veira, A., Paugam, R., Sofiev, M., Kaiser, J.W., Marenco, F., Burton, S.P., 
Benedetti, A., Engelen, R.J., Ferrare, R., Hair, J.W., 2017. Two global data sets of 
daily fire emission injection heights since 2003. Atmos. Chem. Phys. 17, 2921–2942. 
https://doi.org/10.5194/acp-17-2921-2017. 

Savenets, M., Osadchyi, V., Oreshchenko, A., Pysarenko, L., 2020. Air quality changes in 
Ukraine during the April 2020 wildfire event. Geographica Pannonica 24 (4), 
271–284. https://doi.org/10.5937/gp24-27436. 

Sofiev, M., Vankevich, R., Ermakova, T., Hakkarainen, J., 2013. Global mapping of 
maximum emission heights and resulting vertical profiles of wildfire emissions. 
Atmos. Chem. Phys. 13, 7039–7052. https://doi.org/10.5194/acp-13-7039-2013, 
2013.  

Stohl, A., Thomson, D.J., 1999. A density correction for Lagrangian particle dispersion 
models. Bound.-Layer Met. 90, 155–167. 

Stohl, A., Hittenberger, M., Wotawa, G., 1998. Validation of the Lagrangian particle 
dispersion model FLEXPART against large scale tracer experiments. Atmos. Environ. 
32, 4245–4264. 

Stohl, A., Forster, C., Frank, A., Seibert, P., Wotawa, G., 2005. Technical note: the 
Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 5, 
2461–2474. https://doi.org/10.5194/acp-5-2461-2005, 2005.  

Talerko, M., Kovalets, I., Lev, T., Igarashi, Y., Romanenko, O., 2021a. Simulation study of 
the radionuclide atmospheric transport after wildland fires in the Chernobyl 
Exclusion Zone in April 2020. Atmos. Pollut. Res. 12 (3), 193–204. https://doi.org/ 
10.1016/j.apr.2021.01.010, 2021.  

Таlerko, M.M., Lev, Т.D., Кashpur, V.O., 2021b. Estimation of the contribution of dust 
storm on April 16, 2020 to radioactive contamination of the atmosphere during 
forest fires in the exclusion zone. Nuclear Power and the Environment 1 (20), 81–95. 
https://doi.org/10.31717/2311-8253.21.1.7 (in Ukrainian).  

Vautard, R., Bessagnet, B., Chin, M., Menut, L., 2005. On the contribution of natural 
Aeolian sources to particulate matter concentrations in Europe: testing hypotheses 
with a modelling approach. Atmos. Environ. 39 (18), 3291–3303. https://doi.org/ 
10.1016/j.atmosenv.2005.01.051. 

Wagenbrenner, N.S., Germino, M.J., Lamb, B.K., Robichaud, P.R., Foltz, R.B., 2013. Wind 
erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and 
total horizontal sediment flux. Aeolian Research 10, 25–36. https://doi.org/ 
10.1016/j.aeolia.2012.10.003. 

Winiarek, V., Vira, J., Bocquet, M., Sofiev, M., Saunier, O., 2011. Towards the 
operational estimation of a radiological plume using data assimilation after a 
radiological accidental atmospheric release. Atmos. Environ. 45 (17), 2944–2955. 
https://doi.org/10.1016/j.atmosenv.2010.12.025. 

Zhang, X.L., Su, G.F., Yuan, H.Y., Chen, J.G., Huang, Q.Y., 2014. Modified ensemble 
Kalman filter for nuclear accident atmospheric dispersion: prediction improved and 
source estimated. J. Hazard Mater. 280, 143–155. https://doi.org/10.1016/j. 
jhazmat.2014.07.064. 

Zhang, X.L., Su, G.F., Chen, J.G., Raskob, W., Yuan, H.Y., Huang, Q.Y., 2015. Iterative 
ensemble Kalman filter for atmospheric dispersion in nuclear accidents: an 
application to Kincaid tracer experiment. J. Hazard Mater. 297, 329–339. https:// 
doi.org/10.1016/j.jhazmat.2015.05.035. 

Zheng, Q., Leung, J.K.C., Lee, B.Y., Lam, H.Y., 2007. Data assimilation in the atmospheric 
dispersion model for nuclear accident assessments. Atmos. Environ. 41 (11), 
2438–2446. https://doi.org/10.1016/j.atmosenv.2006.05.076. 

I.V. Kovalets et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S1352-2310(22)00370-3/sref15
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref15
https://doi.org/10.1007/978-981-13-3281-4_10
https://doi.org/10.1007/978-981-13-3281-4_10
https://doi.org/10.1021/acs.est.1c03314
https://doi.org/10.1021/acs.est.1c03314
https://firms.modaps.eosdis.nasa.gov/
https://firms.modaps.eosdis.nasa.gov/
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref19
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref19
https://doi.org/10.5194/gmd-12-4955-2019
https://doi.org/10.5194/gmd-12-4955-2019
https://uhmi.org.ua/msg/fire2020/analytical.pdf%20(date%20of%20access
https://uhmi.org.ua/msg/fire2020/analytical.pdf%20(date%20of%20access
https://doi.org/10.5194/egusphere-egu22-11620
https://doi.org/10.5194/egusphere-egu22-11620
https://doi.org/10.5194/acp-17-2921-2017
https://doi.org/10.5937/gp24-27436
https://doi.org/10.5194/acp-13-7039-2013
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref26
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref26
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref27
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref27
http://refhub.elsevier.com/S1352-2310(22)00370-3/sref27
https://doi.org/10.5194/acp-5-2461-2005
https://doi.org/10.1016/j.apr.2021.01.010
https://doi.org/10.1016/j.apr.2021.01.010
https://doi.org/10.31717/2311-8253.21.1.7
https://doi.org/10.1016/j.atmosenv.2005.01.051
https://doi.org/10.1016/j.atmosenv.2005.01.051
https://doi.org/10.1016/j.aeolia.2012.10.003
https://doi.org/10.1016/j.aeolia.2012.10.003
https://doi.org/10.1016/j.atmosenv.2010.12.025
https://doi.org/10.1016/j.jhazmat.2014.07.064
https://doi.org/10.1016/j.jhazmat.2014.07.064
https://doi.org/10.1016/j.jhazmat.2015.05.035
https://doi.org/10.1016/j.jhazmat.2015.05.035
https://doi.org/10.1016/j.atmosenv.2006.05.076

	Estimation of Cs-137 emissions during wildfires and dust storm in Chernobyl Exclusion Zone in April 2020 using ensemble ite ...
	1 Introduction
	2 Description of wildfires in ChEZ in April 2020
	2.1 A brief review of the event
	2.2 Previous STE studies
	2.3 Measurement data used in this study

	3 Setup of the atmospheric dispersion model
	3.1 Basic setup of FLEXPART ADM
	3.2 Parameters of emissions from the wildfires
	3.3 Parameters of emissions from the dust storm

	4 Source term estimation method
	4.1 STE as a minimization problem
	4.2 Covariance matrices
	4.3 Minimization procedure
	4.4 Computational details

	5 Results of calculations
	6 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


