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Abstract 

An improved inverse modelling method to estimate the location and the emission rate of an 

unknown point stationary source of passive atmospheric pollutant in a complex urban geometry is 

incorporated in the Computational Fluid Dynamics code ADREA-HF and presented in this paper. The 

key improvement in relation to the previous version of the method lies in a two-step segregated 

approach. At first only the source coordinates are analysed using a correlation function of measured 

and calculated concentrations. In the second step the source rate is identified by minimizing a 

quadratic cost function. The validation of the new algorithm is performed by simulating the MUST 

wind tunnel experiment. A grid-independent flow field solution is firstly attained by applying 

successive refinements of the computational mesh and the final wind flow is validated against the 

measurements quantitatively and qualitatively. The old and new versions of the source term 

estimation method are tested on a coarse and a fine mesh. The new method appeared to be more 

robust, giving satisfactory estimations of source location and emission rate on both grids. The 

performance of the old version of the method varied between failure and success and appeared to 

be sensitive to the selection of model error magnitude that needs to be inserted in its quadratic cost 

function. The performance of the method depends also on the number and the placement of 

sensors constituting the measurement network. Of significant interest for the practical application of 

the method in urban settings is the number of concentration sensors required to obtain a 

“satisfactory” determination of the source. The probability of obtaining a satisfactory solution – 

according to specified criteria –by the new method has been assessed as function of the number of 

sensors that constitute the measurement network. 
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The characterization of an unknown atmospheric pollutant’s source (i.e., assessment of its location 

and emission rate) following a release (i.e., using the available observations) is a special case of 

inverse atmospheric dispersion problem. The inverse dispersion problems are solved by combining 

in some optimal way results of computational dispersion models and existing measurements. Such 

kind of inverse problems are to be solved in a variety of application areas such as emergency 

response (e.g. Kovalets et al., 2011; Sharan et al., 2012; Singh et al., 2013; Ben Salem et al., 2016) 

pollution control decisions (Koracin et al., 2011), indoor air quality (Matsuo et al., 2015) and monitor 

of nuclear testing (Pudykiewicz, 1998). A review of source term estimation methods for atmospheric 

dispersion events is given in Hutchinson et al. (2016). 

In the urban or industrial plant spatial scale, where complex and turbulent meteorological conditions 

arise due to the interaction of the air flow with the buildings, there are few researchers that have 

combined Computational Fluid Dynamics (CFD) with source estimation techniques (Mons et al., 

2017; Xue et al., 2017; Kumar et al., 2016; Kumar et al., 2015; Libre et al., 2012; Kovalets et al., 2011; 

Bady et al., 2009; Chow et al., 2008; Keats et al., 2007). In Mons et al. (2017) a non-intrusive 

ensemble-based variational data assimilation scheme enhanced by proper orthogonal 

decomposition was deployed in conjunction with a Large Eddy Simulation (LES) solver. Their 

methodology was proved to be able to accurately identify both pollutant source and wind 

characteristics with a computational cost of O(10) LES simulations. Xue et al. (2017) used a two-step 

deterministic approach for identifying the point source with a constant emission rate in built-up 

urban areas. The analytic form of the marginal posterior probability density function of the source 

location was derived to estimate the source location. The emission rate was then estimated using 

the conditional posterior distribution. Their method was tested using data obtained in two wind 

tunnel scenarios of contaminant dispersion in typical urban geometries represented by block arrays. 

CFD modelling and the adjoint equations were used to calculate the building-resolving source-

receptor relationship required in the identification. In Kumar et al. (2016) a source inversion 

methodology was based on the renormalization inversion theory coupled with a building resolving 

CFD (i.e. fluidyn-PANACHE) modelling approach which estimates the release height along with the 

projected location on the ground surface and the intensity of an unknown continuous point source 

in an urban area. In Kumar et al. (2015) a methodology was described combining a renormalization 

inversion technique with a building-resolving CFD approach for source retrieval in the geometrically 

complex urban regions. The renormalization inversion approach was based on an adjoint source-

receptor relationship. Libre et al. (2012) CFD (i.e. Fluidyn-PANEPR) was used to model the dispersion 

while the Bayesian inference algorithm enabled the estimation of the source term in real time. The 

modelling platform based on these developments produces real time 3D concentration fields owing 

to precalculated wind fields patterns selected from a database on the basis of real time 

meteorological data acquisition. Bady et al. (2009) examined the accuracy of the inverse CFD (Star-

CD) modelling in a simple laminar flow, but focused on the source location. The pollutant was 

emitted for variable wind conditions and the wind flow around a single building was investigated for 

two different sources. In both cases the numerical concentration results of the forward problem 

were used as concentration measurements for the inverse problem. By using the peak concentration 

as indicator, they could identify the source of the pollution. Chow et al. (2008) used Bayesian 

inference via stochastic sampling algorithms with a high-resolution CFD code (FEM3MP) in order to 

reconstruct an atmospheric release event and to determine the plume source and release rate based 

on point measurements of concentration. The CFD model has been used as a ‘black-box’, i.e., for 
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each set of input parameters the model was run in forward mode to obtain the corresponding set of 

output parameters. In Keats et al. (2007) a similar probabilistic formulation of inverse problem was 

adopted and posterior distribution function was evaluated with Monte-Carlo sampling. However 

instead of using a CFD model (i.e. urbanSTREAM) as a ‘black box’ tool, a ‘source-receptor’ function 

was constructed using the adjoint transport equation, as per Marchuk (1982) and Marchuk (1996). 

At this point it should be noted that there are limitations in some cases of inverse modelling. 

According to Dhall et al. (2006) there is a typical problem for non-linear least squares fitting due to 

the ill-posed minimization problem and the non-convex cost function. This problem is called 

‘overfitting’ effect. According to this effect, the calculation errors which are introduced by a wrong 

source location estimation are compensated by error in estimated source rate. Thus, the resulting 

quadratic cost function reaches minimum for the wrong combined solution (source location and 

source rate). In context of data assimilation, this problem is especially important when the number 

of measurements is small. For example, in Kovalets et al. (2009) the cost function was minimized 

with respect to both wind field and source rate. It was found that for too coarse resolution of the 

monitoring network the Normalized Mean Squared Error of the concentration field (closely related 

to the value of cost function) decreased in the data assimilation process while the error of the wind 

field (being part of the solution vector) increased. This ‘overfitting’ effect was also observed in the 

work of Tsiouri et al. (2014) in which the Source Inversion (SI) algorithm produced unsatisfactory 

results regarding the distance between the true and the estimated source location and the true to 

estimated source rate ratio. 

This study presents an integrated and innovative approach, to eliminate the ‘overfitting’ effect, 

based on the following improvement: a non-simultaneous determination of the source location and 

rate is proposed, based on a two-step segregated approach that combines a correlation coefficient 

and a cost function, instead of using a single cost function as was done by Kovalets et al. (2011). The 

correlation coefficient of measured and calculated concentrations is used to estimate the source 

location, while the quadratic cost function is directly solved to calculate the emission rate. In the 

following part of the paper, the new version of the method is described in detail and then both old 

and new versions are inter-compared by applying them on the MUST wind-tunnel experimental 

dataset. This experiment has been selected because of its high quality data and its extensive use in 

other similar works. The source term estimation method is based on the calculated flow field, so a 

grid independent solution for the wind flow field is firstly obtained by applying successive 

refinements of the computational mesh. However, the old and new source term estimation methods 

are tested on both coarse and fine grids, to assess their dependence on the grid resolution, in 

combination to other parameters. In the last part of the paper the dependence of the new method’s 

performance on the number of measuring sensors is examined.  

 

2. Methodology 

In general, solving the inverse atmospheric dispersion problem consists of estimating the posterior 

joint probability distribution of the unknown model parameters (usually the source spatial 

coordinates and emission rate), the measurements and the prior estimations of the unknown model 

parameters. However this estimation is computationally expensive. Therefore in many practical 

applications, e.g., in emergency response, the use of variational formulation is preferred, in which 
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only the location of the maximum of the posterior probability is estimated. If model errors, 

measurement errors and prior estimation errors follow Gaussian probability distributions, then, 

locating the maximum of the posterior joint probability distribution coincides with minimizing a cost 

function, such as the one proposed by Kovalets et al. (2011). In that work, as well as in the present, 

the unknown pollutant source parameters, that are sought for, are the emission rate sq  and the 

coordinates sx , sy , sz . The cost function that was minimised by Kovalets et al. (2011) to calculate 

these unknown parameters was formulated as follows: 
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The first three terms in the r.h.s of Eq. 1 are regularization terms that contain prior estimations of 

the source location ( sx0 , sy0 , sz0 ) and parameters of probability distributions characterizing errors of 

prior estimations of source location (assumed to be Gaussian), namely mean squared deviations of 

horizontal ( 2
H ) and vertical ( 2

V ) coordinates. Regularization terms are added to address the 

problems of ill-posedness of the inverse problem and non-convexity of the cost function. The last 

term in Eq. 1 accounts for the mean squared difference between calculated ( c
nc ) and measured ( o

nc ) 

concentration values at the measurement point n, while 2
O  and 2

M  are mean squared errors of 

measurements and model results respectively. K is the total number of measurement points. 

Both source emission rate and coordinates are estimated through minimization of Eq. (1) in the work 

of Kovalets et al. (2011). However, as already noted in the Introduction, in such inverse problem 

solution, an “overfitting” effect may occur, in which the quadratic cost function reaches a minimum 

for the wrong combined solution (large error in source location compensated by small error in 

source rate or vice versa). Therefore, to avoid this situation, in the present work the estimation of 

the source location is separated from the estimation of source rate. So, instead of using Eq. (1) the 

present method is split in two parts, as follows. 

In the first part, the following correlation-based cost function of measured and calculated 

concentrations (i.e. correlation coefficient taken with negative sign) is minimised to calculate the 

source coordinates: 
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where  denotes arithmetic averaging over all sensors positions. 

To minimize Eq. (2a), a direct method is applied here. A direct method requires calculating the 

values of the function J, therefore requires the model-calculated values of concentration cc  at 

every sensor location for every set of source parameters. Concentrations cc  for every possible 

source location and emission rate need to be calculated very fast for the direct method to be 

effective. A way to achieve this is through the use of “Source-receptor functions” (SRFs) which 
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describe the sensitivity of concentration at a receptor to the parameters of the emitting source. The 

SRFs for each receptor and for each possible source location can be pre-calculated and stored (of 

course for a given flow field) and they can be used when needed to calculate cc . SRFs can be 

calculated in two ways: (a) by “forward”-in-time solution of the concentration transport equation, 

with the emission located at each possible source location, calculating the concentration at each 

receptor due to each possible source (this approach is preferable if the number of potential sources 

is smaller than the number of receptors), and (b) by “backward”-in-time or solution of the adjoint 

concentration transport equation, with the emission located at each receptor, calculating the adjoint 

concentration at each possible source location (this approach is preferable if the number of 

potential sources is higher than the number of receptors). In the present case, the emission source 

can be located anywhere in the computational domain, which means a theoretically infinite number 

of potential source locations. Therefore adjoint runs of the dispersion model are carried out in this 

paper to calculate SRFs. An Eulerian approach is selected for the formulation of the adjoint 

concentration equation, in which receptor points are considered as sources, and the flow field is 

reversed. The values of “adjoint” concentrations are calculated on a numerical (i.e., discrete) grid. 

Each of these values represents the sensitivity of the sensor to a source located at that grid node. So, 

the possible source locations considered in this approach are primarily the computational grid 

nodes. Additional potential source locations could be considered by computing (e.g., by 

interpolation) the values of the adjoint variable at points lying between the grid nodes. 

Using the adjoint concentrations, Eq. (2a) is written as follows: 
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In Eq. (2b), the modelled concentration cc at a sensor location is expressed through the SRF, as the 

product of the adjoint concentration c - obtained by the solution of the adjoint dispersion equation 

for that sensor – with an arbitrary source rate sq . The use of an arbitrary source rate is possible 

because J does not depend on sq  for a stationary source of a passive and non-reactive tracer. 

Indeed, let us consider two calculated concentration fields 1

cc  and 2

cc  obtained with different source 

rates 
sq1  and 

sq2 . Since equation of concentration transport is linear with respect to sq  (for a 

passive and non-reactive tracer), then the following relationship holds: 
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From Eq. 3, it is obvious that the calculated values of J1 and J2 for 1

cc  and 2

cc  will be the same. Thus, J 

does not depend on source rate provided that it is constant. For non-constant source rates,  tq s

1  

and  tq s

2 , the values of J1 and J2 will in general be different. Only if 1 2( )and ( )s sq t q t  are similar, i.e., if 

2 1( ) / ( )s sq t q t const  , then again J1 and J2 will be the same. 
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Therefore, the usage of correlation-based cost function (Eq. 2b) enables the separate identification 

of source coordinates from the source rate, which will be calculated in the 2nd part. An arbitrary 

value of ‘first-guess’ source rate 0

sq  is used for calculating the correlation coefficient since it does 

not influence the solution. However, the drawback of the present approach is that prior information 

cannot be used through regularization terms, as were the first three terms in the r.h.s of Eq. (1) – 

used by Kovalets et al. (2011). This is a drawback because inverse problems are frequently ill-posed, 

i.e., the solution can often be sensitive to input data, unless they are properly regularized by using 

prior information about source properties. This is a subject for future investigation. 

In the second part of the methodology, the source rate is identified by minimizing – with respect to 
sq  – a quadratic cost function of the following generic form: 
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Having identified in the 1st part the grid node sk , where the source is located, Eq. (4) is expressed 

for the node ks through the use of SRFs, similarly to Eq. (2) (cf. formula (15) from Kovalets et al., 

2011): 
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where *

, skn
c  is the adjoint variable for the node sk . 

The solution of problem (5) can be obtained analytically by equating to zero the derivative of sk
J  

with respect to sq : 

   










 K

n

o

nkn

s

kn

K

n

o

nkn

s

ss

k ccqcccq
qq

J
sss

s

1

*

,

*

,
1

2*

,
02  (6) 

The solution of (6) is: 
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The source emission rate is calculated from Eq. (7). Note that positivity of *

nkc  (which is the solution 

of parabolic adjoint equation) guarantees positiveness of the estimated emission rate. 

In brief the computational steps of the algorithm are the following: 

1. Solution of the hydrodynamic problem for the specific geometry and boundary conditions: 

the wind flow field is resolved using the CFD code ADREA-HF. The 3-dimensional, steady-

state fields of the 3 wind velocity components and the turbulence-related quantities (e.g., 
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the turbulence kinetic energy and the turbulence kinetic energy dissipation rate in case of 

using a k-ε turbulence closure (Argyropoulos and Markatos, 2015) are calculated. 

2. Calculation of Source Receptor Function (SRF) for each sensor: 

a. Since concentration is calculated by the CFD model at the nodes of the 

computational grid, while the locations of concentration-measuring sensors cannot, 

in the general case, coincide with the nodes of the computational grid (this is 

especially true for a CFD code that uses a structured mesh of parallelepiped cells), 

model-concentrations need to be spatially interpolated to the sensors positions, for 

the latter to be used as source terms in the adjoint dispersion equations. Therefore, 

the coefficients of linear interpolation from the computational grid to each sensor’s 

location are calculated. 

b. The adjoint concentration equation is solved for each sensor using the 

hydrodynamic fields obtained in the 1st step (inversed) and with its source term 

defined by the linear interpolation operator from step 2a. The values of the resolved 

adjoint variable at each grid node obtained for a sensor represent the values of the 

SRF for that sensor if the source were located at the particular grid node. 

c. The resulting gridded values of SRF for each sensor are stored. 

3. Finding the minimum of the cost function: the cost function (2b) is evaluated at each grid 

node, i.e., considering that the source is located in the particular grid node. The node at 

which the smallest value of the cost function is reached (i.e. correlation is maximized) 

coincides with the source location. 

4. Having calculated the SRFs in step 2 and identified the grid node of the source in step 3, the 

source rate is calculated by Eq. (7). 

 

It is reminded that the above modifications (Eqs. 2 and 4 instead of Eq. 1) have been introduced in 

the algorithm in order to eliminate the ‘overfitting’ effect. It is expected to obtain better 

performance in the prediction of the source location and emission rate. 

A point needed to be addressed is that practical application of the described method could be 

complicated by the fact that in reality even if release rate is stationary measured concentrations will 

not be stationary due to turbulence and influence of large eddies existing in atmospheric boundary 

layer.  Therefore it is recommended to use time integrated measurements in source inversion 

procedure. 

For further details on the theoretical background and the adjoint equation solved, the reader is 

referred to Kovalets et al. (2011). The source inversion algorithm is integrated within the ADREA-HF 

CFD model (Venetsanos et al., 2010) which was very extensively validated against laboratory and 

field experiments on atmospheric dispersion in urban atmospheric environment (e.g. Efthimiou et 

al., 2017a,b,c, Efthimiou et al., 2016, Efthimiou et al., 2015, Efthimiou et al., 2014; Efthimiou et al., 

2011a,b, Efthimiou and Bartzis, 2011 and many others). 

 

3. Results and Discussion 
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3.1. The MUST wind tunnel experiment 

The methodology has been validated against data of the MUST wind tunnel experiment (Bezpalcova 

and Harms, 2005) which have been scaled up for the conditions of the corresponding field 

experiment (Yee and Biltoft, 2004). Hence the CFD ADREA-HF code (Efthimiou et al., 2016) has been 

setup for the simulation in the field scale and all the experimental and computational parameters 

below are given in the field scale. 

In MUST experiment the obstacles were arranged in 12 rows, each consisting of 10 obstacles. The 

obstacles were nearly identical and had average length, width and height 12.2 m × 2.42 m × 2.54 m 

respectively. The contaminant’s concentration has been measured by a 256-detectors array 

arranged along obstacle rows in the part of the domain covered by the plume (Fig. 1). All detectors 

were placed at the same height equal to 1.28 m. Non-zero concentrations have been measured by 

nearly all (244 out of 256) detectors. Here it is noted that only the measurement data that were 

available to the authors (through data base of COST Action 732) are taken into account. 

The wind flow was characterized by neutral stratification, wind speed at the roof level Uref = 8 m/s, 

(field scale) and wind direction −45o (Fig. 1) in the experimental coordinate system.  

The contaminant originated from a point source located at the ground level (Fig. 1). The volume flow 

rate of gas at the source was: ≈ 3.3 × 10−6 m3s-1. 
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Fig. 1. The computational domain of the MUST case. The sensors are presented with yellow circles. 

The source is depicted with a star. Small offsets of the containers are observed (see Biltoft, 2001). 

3.2. The wind field computational simulations 

The wind flow problem was solved in a 3D rectangular computational domain with the x- and y-axes 

as presented in Fig. 1 and the z-axis in the vertical direction. The domain dimensions are presented 

in the first column of Table 1. 

 

Table 1. Computational domain dimensions and details of the three numerical grids that have been 

tested 

Domain 
dimensions x/y/z 

(m) 

Grid 
characterization 

Total 
number 
of cells 

Number of 
cells in each 

axis 

Minimum/maximum cell sizes 
(m) 

x y z x y z 
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243/268/21 

“Coarse” 209,950 85 95 26 2.5/7.5 2.5/7.5 0.2/2.06 

“Medium” 820,742 164 185 26 1.25/5.8 1.25/5.8 0.2/2.06 

“Fine” 2,940,742 312 353 26 0.625/5.3 0.625/5.3 0.2/2.06 

 

The domain extends horizontally by 17.55 m (6.9 H, H=2.54 m being the buildings height) upwind of 

the first buildings and by 52.65 m (20.7 H) downwind of the last buildings. The vertical dimension of 

the domain is about 8.3 H. The above dimensions conform to the recommendations of COST Action 

732 (Franke et al., 2007). 

One of the crucial factors affecting the quality of the flow field solution is the computational mesh 

resolution. To ensure grid-independency of the obtained flow field solution, three spatial 

discretizations have been tested. Details are listed in Table 1. The horizontal resolution is increased 

going from the “coarse” to “fine” grid, while the vertical resolution is identical for the three grids. 

The grid refinement ratio for a 3D mesh is defined as the cubic root of the ratio between the 

numbers of grid elements in the two meshes. This parameter should be greater than 1.3 to allow the 

discretization error to be separated from the other sources of error (Celik, 2004). As can be seen 

from Table 1 the refinement ratios are r21 = 1.57 and r32 = 1.53, where subscript 1 indicates the 

coarse grid, 2 the medium grid and 3 the fine grid. 

The boundary conditions for the hydrodynamic variables at each boundary plane or surface of the 

domain are presented in Table 2. 

 

Table 2. Boundary conditions for the hydrodynamic variables (u, v, w: velocity components in the x-, 

y-, z-axis respectively, k: turbulence kinetic energy, ε: turbulence kinetic energy dissipation rate) 

Plane Boundary condition 

-x Inlet: fixed vertical profiles for u, v, k, ε, w=0 

+x Outlet: 0 x , φ=u, v, w, k, ε 

-y Outlet: 0 y , φ=u, v, w, k, ε 

+y Inlet: fixed vertical profiles for u, v, k, ε, w=0 

Ground Standard wall functions, roughness length = 0.0165m 

Top 
Fixed values for u, v, k, ε, w is calculated from the cell 

mass balance 

Building walls Standard wall functions, roughness length = 1x10-5 m 

 

The fixed vertical profiles at the inlet planes (-x and +y) for u, v, k and ε have been constructed based 

on the experimental corresponding profiles, while for w a zero value has been set. The outlet 

boundary conditions at planes +x and –y are justified, as these planes are located at a sufficient 

distance (see above) downwind of the last buildings. For turbulence modelling, the standard k–ε 

model (Launder and Spalding, 1974) was used to be in agreement with Kovalets et al. (2011). 
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The problem was treated as a transient case. The unsteady Reynolds-Averaged Navier-Stokes 

equations for total mass, the three components of momentum, the turbulence kinetic energy and its 

dissipation rate were solved. At the end of the solution, steady-state values were produced. The 

total calculation time (1200s) was set about equal to the travel time from the source point to the 

outlet of the computational domain of a hypothetical particle moving with the lowest speed 

observed in the experiment. This time was sufficient to reach a steady-state situation. The time step 

was automatically adapted according to the desired Courant–Friedrichs–Lewy (CFL) number whose 

maximum value was set to 2 based on the authors’ experience for numerical stability (better 

convergence behaviour of the solver). Nevertheless, as an implicit scheme is adopted and a steady-

state solution is sought for, the magnitude of the final time step does not play here an important 

role. A first order scheme was used for the time derivative. 

For the calculation of pressure, the linear system that arises from the discretized equations was 

solved using the preconditioned BiCGstab method. A block-ILU[0] type of preconditioner was used 

(additive Swartz preconditioner, Saad, 2003). 

The 1st order upwind scheme has been used for approximation of convective terms. The second 

order central-difference scheme has been used for approximation of diffusion terms. It should be 

noticed that, since a grid independent numerical solution has been attained, the selection of the 

numerical schemes for the spatial derivatives does not have significant effects on the results. 

The computations were run in parallel using four cores of a processor. ADREA-HF is parallelized for 

shared memory architectures using the OpenMP protocol. 

3.3. Results of grid sensitivity study 

The flow field was computed by running the CFD model on the three meshes with increasing spatial 

resolution, as shown in Table 1. The calculated velocity components were inter-compared to 

evaluate the grid independency of the solution. A qualitative evaluation was carried out using scatter 

plots. The measurement positions of the experiment have been selected as the set of points where 

the velocity components were compared. There were 1753, 1219 and 534 measurement locations 

for the u, v, and w wind velocity components respectively. 

Scatter plots comparing the calculated velocity components between the three mesh resolutions 

(coarse to medium and medium to fine) are presented in Fig. 2. The scatter plots reveal a very close 

prediction between the medium and the fine meshes, indicating that grid independency is attained 

towards the fine grid resolution. Therefore, the fine grid was chosen for the following solution of the 

inverse problem. 
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Fig. 2. Comparison of calculated wind velocity components u, v, w between the three mesh 

resolutions (coarse to medium and medium to fine). 

3.4. Validation of the hydrodynamic problem solution 

It is anticipated that the accuracy of the inverse source term estimation depends on the accuracy of 

the hydrodynamic (flow field) problem solution. The quality of the flow field simulation has been 

validated for the fine grid resolution (Table 1) according to the conclusions of the grid independency 

study. For the validation the calculated non-dimensionalised velocities U/Uref, V/Uref and W/Uref 

(where Uref is a reference velocity equal to 8 ms-1 for the experiment being simulated) have been 

compared with the corresponding experiment values. 

The comparison has been performed using the Hit Rate (HR). This metric was first proposed by COST 

Action 732 (Schatzmann et al., 2010). In principle, the Hit Rate specifies the fraction of model results 

that differ within an allowed range D or R from the comparison data. D is the allowed range of 

relative error and R is the allowed range of absolute error. Although the broad quantitative 

application of the hit rate poses some questions, its use as a qualitative metric presents some 

advantages over other similar metrics (e.g. fractional bias, normalized mean square error) because 

of its simplicity and applicability to variables that can take both negative and positive values 

(Kakosimos and Assael, 2013). The formal definition of HR is the following: 
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


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O
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N
ii

i

ii

i  (8) 

where n is the total number of compared couples of values, Pi is the model result and Oi is the 

observation (normalised velocities). In other words a Hit is added if one of the following conditions is 

fulfilled: 
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1. ii OP   is smaller than the allowed absolute deviation R, or 

2.   iii OOP   is smaller than the allowed fractional deviation D 

Based on COST Action 732 (Schatzmann et al., 2010) the proposed values of R for the MUST wind 

tunnel experiment and for each velocity component are: for U/Uref R = 0.008, for V/Uref and W/Uref R 

= 0.007. According to the VDI guideline (VDI, 2005), that structured the application of HR metric, the 

allowed relative difference D equals 0.25. 

The Hit Rates obtained for the calculated wind velocity components on the fine grid resolution are 

presented in Table 3, separately for four groups of sensors, according to their height above ground: 

a) sensors placed above twice the mean building height (z > 2H), b) sensors placed between the 

mean building height and twice the mean building height (H < z  2H), c) sensors placed between 

half the mean building height and the mean building height (0.5 H < z  H), and d) sensors placed up 

to half the mean buildings height (z  0.5 H). The mean building height H is 2.55m. As can be seen in 

Table 3, no V-component measuring sensors were placed during the experiment above 2H. It is 

noticed that the model presents a very good performance above the buildings (z > H), where the Hit 

Rate has almost the ideal value (=1.0) for the velocities U/Uref and V/Uref. Below the building roofs 

the Hit Rate gradually decreases for all velocity components. U/Uref presents in total better 

agreement with the experimental data than V/Uref and W/Uref. Very close to the ground the 

velocities V/Uref and W/Uref present the lowest Hit Rates. 

Table 3. Hit Rates of calculated velocity components on the fine grid resolution. The sensors have 

been grouped according to their height above ground. The mean building height H = 2.55m. 

Group of sensors 
Hit rate 

U/Uref V/Uref W/Uref 

2H < z 1.0 - 0.31 

H < z ≤ 2H 0.99 1.0 0.18 

0.5H < z ≤ H 0.75 0.43 0.10 

z ≤ 0.5H  0.48 0.14 0.13 

Total 0.75 0.43 0.18 

 

Besides the above quantitative metrics, scatter plots of non-dimensionalised calculated versus 

observed velocities were used as qualitative validation. The scatter plot of velocity components 

U/Uref and V/Uref for the fine grid is presented in Fig. 3. The same groups of sensors have been used 

as shown in Table 3. It can be observed that there is good agreement with the experiment above the 

average height of the roofs while below the average height of the roofs the model tends to 

underpredict the experimental values, while the scatter of the points increases. The underestimation 

becomes higher as the sensors approach the ground. Nevertheless the majority of the points lies 

within the factor-of-2 area, delineated by the dashed lines. 
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Figure 3. Scatter plot of calculated versus observed velocities U/Uref and V/Uref at experimental 

sensors locations; sensors are classified according to their height above ground; buildings height H = 

2.55m 

The observed discrepancies between calculated and experimental values of wind velocities inside 

the street canyons can be attributed to unsteady (low frequency) flow features that have also been 

reported in past relevant studies (Hertwig et al., 2012) and which cannot be simulated by RANS 

models as the one used here. Nevertheless, as can be seen in the following sections, these 

discrepancies do not have a major effect on the performance of the inverse problem. 

3.5. The inverse source term estimation computations 

Having established a grid-independent solution for the flow field, the adjoint concentration equation 

was solved on the fine grid resolution for each sensor as source term. The linear interpolation 

coefficients between the computational grid and the sensors locations are first calculated, as 

mentioned at the end of Section 2. The flow and turbulence related variables needed for the 

formulation of the adjoint equations are taken from the solution of the hydrodynamic problem. The 



15 
 

boundary conditions of the adjoint variable c* for each boundary plane or surface of the domain are 

presented in Table 4. 

Table 4. Boundary conditions for the adjoint variable c* 

Plane Boundary condition 

-x c*=0 

+x c*=0 

-y c*=0 

+y c*=0 

Ground 0*  zc  

Top 0*  zc  

Building walls 0*  sc , s=x, y, z 

 

The total calculation time was set equal to the one used for the hydrodynamic computations, i.e., 

1200s, which was adequate for obtaining a steady-state solution. For the discretization of the 

convective term in the adjoint equation the upwind scheme was used. The time step was kept 

constant and equal to 1s. 

3.6. Evaluation of the SRF 

The calculated source-receptor functions are approximate, and therefore they need to be evaluated. 

For this purpose, the forward-in-time dispersion problem has been solved with the source located at 

the true location of the experiment and the true emission rate s
tq . As a result, concentrations have 

been calculated at the sensors positions. These concentrations (denoted as cF) have been compared 

with the concentrations resulting from the calculated SRFs, i.e, from the calculated value of the 

adjoint variable at the true source location for the corresponding sensors  cqc s
t

SRF . As statistical 

index for this comparison, the relative Mean Absolute Error (MAE)   FSRFF cccMAE  has 

been used, where triangle brackets denote arithmetic averaging. The ideal value is MAE = 0. The 

value obtained here was MAE = 0.1 In order to clarify the significance of such error in SRF, the same 

statistical parameter has been calculated on the basis of comparison of results of the forward run 

with the measurements which gave MAE = 0.89. Therefore, it is clear that the error introduced by 

SRF is significantly less (by a factor of about 9) than the model error as compared to measurements, 

and it therefore could be considered as negligibly small. 

In Figure 4 the scatter plot comparing concentrations calculated by the SRFs with concentrations 

obtained by forward computations at the sensors locations is presented. It is seen that all points lie 

very close to the 1:1 line. 
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Figure 4. Scatter plot comparing concentrations calculated by SRF with concentrations obtained by 

forward computation at the sensors locations. 

 

3.7. Source location and emission rate estimation - validation of results 

Having calculated the SRFs, the next step is to calculate the source location and emission rate. In this 

paper, the methodology of Kovalets et al. (2011), denoted hereafter for economy reasons as “old” 

and realized through minimization of the single equation (1), has been compared with the “new” 

two-step method, realized through minimization of equation (2b) and solution of equation (7). For 

both methods the effect of the computational grid resolution on the results is examined. Also for 

both methods all available concentration sensors have been used. 

The old method provides the option to use prior information (first guess) regarding the source 

location ( sx0 , sy0 , sz0 , σΗ, σV in equation (1)). If no prior information is used, then the first three 

terms of equation (1) (regularization terms) are neglected. In this paper both options of the old 

method have been tested (i.e., with and without prior information). If prior information was used, 

then the selected values were 800 
sx m, 2550 

sy m, 00 
sz m, σΗ = 170 m and σV = 2.5 m following 

Kovalets et al. (2011). It has been assumed that the measurement error σO would be negligible in 

comparison to the model error σM. Different values of the model error have been tested, to assess 

the effect of this parameter. 

Regarding the new method, the correlation-based cost function (2b) has been calculated at all grid 

points and its minimum was found. The node with the smallest value of the cost function was the 

calculated source location. Then the source rate has been calculated by Eq. (7). 

In order to quantify the error in locating the source, the horizontal    22 s
t

ss
t

s
H yyxxr   

and vertical s
t

s
V zzr   distances of the estimated source location (xs, ys, zs) from the true source 

location (
s

tx , 
s

ty , 
s

tz ) = (95.74, 246.52, 0.0), have been used. The distances of the first-guess source 
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location are 88.170, Hr m and 0.00, Vr m. As already noted, the predicted source (xs, ys, zs) is 

located at the centre of the computational cell with the minimum value of the cost function (2). 

Therefore the minimum achievable values of rH and rV are those of the distance of the centre of the 

computational cell where the source is actually located from the coordinates of the source. For the 

coarse grid 53.0min, Hr m while for the fine grid 187.0min, Hr m. For both grids 1.0min, Vr m. 

Concerning the source rate the relative source rate ratio     ss
t

s
t

s qqqqq ,max  has been 

calculated which is always greater than unity for both underestimated and overestimated source 

rates. 

The distances between calculated and actual source location and the emission rate ratios that have 

been obtained with the new and old methods for the coarse and fine grids are presented in Table 5. 

For the coarse grid (upper part of Table 5), the new and old (with and without-prior information) 

methods present the same – very satisfactory – performance, as long as the model error in the old 

method is assumed to be less than or equal to 10-8. As the assumed model error σM is increased in 

the old method (implying that less and less confidence is attributed to the model results) the 

solution converges to the first guess and the corresponding rH,0 (see above). 

On the fine grid (lower part of Table 5), the new method presents again a very satisfactory 

performance, especially regarding the horizontal distance between estimated and true source 

locations. On the other hand, the old method fails to predict both the location and the emission rate 

of the source if no prior information is given, or if prior information is given and the model error is 

assumed to be small (10-9). These results indicate that the correlation-based cost function used in 

the new method, having less degrees of freedom, is more robust computationally than the quadratic 

cost function used in the old method. So on the fine grid, that introduces more degrees of freedom, 

i.e., more possible source locations, the old method necessitates the use of prior information. It is 

apparent however that in this case, the old method is sensitive to the value of the model error σΜ. 

When the model error σM increases by one order of magnitude (from 10-9 to 10-8), the old method is 

successful in locating the source and estimating the source rate. But again when the model error is 

increased from 10-7 to 10-6, the old method converges to the first guess. These results indicate that 

for the old method to perform satisfactorily, the model error should be guessed correctly within 1 

order of magnitude. In practice however, it is a difficult task to assess the model error in advance 

(i.e. when the true solution of the inverse problem is unknown). Some methods which allow for 

solution of such task exist (e.g. Wahba and Wendelberger, 1980). Their application is outside of the 

scope of this work. 

On the other hand it should be noted that, not including prior information is a drawback of the new 

method as well. Despite the new method giving good results on the two settings studied here, it 

cannot be concluded that it will be successful in other settings. A possible way to include prior 

information in the new method is to restrict the boundaries of the domain where the source can be 

found. This is a subject of a future study. 

Table 5. Horizontal and vertical distances between estimated and true source locations, and relative 

source rate ratios obtained by the 2 methods on the coarse and fine grids 
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Results of the Coarse grid 

Method rH (m) rV (m) δq (-) 

New 2.99 0.1 1.42 

Old (no prior information) 2.99 0.1 1.42 

Old (prior information, σM=10-9) 2.99 0.1 1.42 

Old (prior information, σM=10-8) 2.99 0.1 1.42 

Old (prior information, σM=10-7) 5.44 0.1 1.06 

Old (prior information, σM=10-6) 18.48 0.1 1.11 

Old (prior information, σM=10-5) 18.48 0.1 1.11 

    

Results of the Fine grid 

Method rH (m) rV (m) δq (-) 

New 1.20 0.1 1.69 

Old (no prior information) 235.06 14.65 1.83x1016 

Old (prior information, σM=10-9) 235.06 14.65 1.83x1016 

Old (prior information, σM=10-8) 0.20 0.1 1.62 

Old (prior information, σM=10-7) 2.99 0.1 1.50 

Old (prior information, σM=10-6) 17.58 0.1 1.15 

Old (prior information, σM=10-5) 17.27 0.1 1.18 

 

3.8. Sensitivity analysis for the number of sensors 

The performance of the source estimation method (regarding both source location and emission 

rate) depends on the number and placement of sensors that provide the concentration 

measurements to be assimilated. This is an important aspect, in particular for the practical 

applicability of the method in urban settings. Therefore, in this chapter the following question will be 

answered: What is the least number of sensors required to obtain a satisfactory solution – according 

to specified criteria – at a given probability level? 

Since the number of measurement points in the simulated experiment is quite large (No = 244) this 

gives the opportunity to calculate the above mentioned dependence on the number and distribution 

of sensors. For this purpose, a given number of sensors K < No is fixed (several different values of K 

are examined) and the source term is estimated for an increasing number of network configurations 

consisting of K sensors randomly sampled out of the No available sensors. The total number of such 

configurations is equal to binomial coefficient oN
KC . The solution is considered as ‘good’ if it satisfies 

the following threshold criteria: distance deviation rH ≤ 15 m, rV ≤ 2.5 m and emission rate ratio δq ≤ 

4 following Kovalets et al. (2011). Generally it is very difficult to define what good solution of source 

inversion problem is. The reason for choosing such criteria for δq is explained in Kovalets et al. 

(2011) by referring to other studies (Platt and DeRiggi, 2010) in which the reported δq reached a 

value up to 10. The criteria for rH and rV were selected on the basis of typical dimensions of buildings. 

However there are also other justifications for such criteria. First of all typical length scale of the 

territory covered by sensors is about 200 m. Hence we consider solution to be 'good' if the achieved 

error in position of source is by one order of magnitude less than the original uncertainty in source 

position. On the other hand if we divide the total simulation area by the number of measurements 

we obtain that there is approximately 1 sensor/16 m2. Therefore 15 m is roughly the length scale of 
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'good' solution because better resolution is not likely to be achieved with the given spatial density of 

sensors. 

The total number of possible network configurations is extremely large for K > 4, making it 

impossible to examine all of them. Figure 5 presents the number of possible combinations for 

different values of K sensors selected out of 244. 

 

 

Figure 5. Number of possible network configurations for different sizes of networks selected out of 

244 sensors. 

 

Therefore, a random sampling algorithm is used (which is described in details in Appendix A of 

Kovalets et al., 2011) to generate repeatedly measurement networks of a given size K, out of the N0 

stations and 2000 measurement networks have been examined for each K. The inverse problem is 

solved for each of these generated networks. The ratio of the number Ngood of networks giving ‘good’ 

results according to the above criteria to the total number Ntot of so far processed networks, is found 

to converge quickly to a stationary value which is the probability of achieving good solution for the 

given size K of measurement network. 

Fig. 6, shows how the ratio Ngood/Ntot converges to asymptotic values for K = 150, 100, 50 and 25 (No 

= 244) as the number of processed measurement configurations (Ntot) increases.  
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Figure 6. Convergence of the relative number of measurement networks giving ‘good’ solutions of 

the inverse problem as the total number of examined network configurations increases, for 

measurement networks of sizes: K = 25, 50, 100, 150. 

 

Fig. 7 shows the probability of achieving good solution of the inverse problem – obtained through 

the use of the random sampling algorithm – , i.e., the asymptotic values of Figure 5, as function of 

the size of the measurement network, varying from K = 25 to K = No = 244. It can be seen that the 

probability of achieving good solution monotonically increases with increasing number of sensors 

used for the solution of the inverse problem. The probability of obtaining good solution equal to 90% 

or higher is achieved with measurement networks consisting of 114 sensors or more. Note that with 

the old method as reported by Kovalets et al. (2011) achieving result of the same quality required at 

least 150 sensors. In practice number of stationary monitoring stations is typically much less than 

the required value. Lack of stationary stations could be complemented with mobile measurements 

which require special algorithms for their assimilation (Hutchinson et al., 2017). 
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Fig. 7. Dependence of probability of achieving good solution of inverse source estimation problem 

on the number of measurement sensors used. 

 

Figure 8 presents the average errors in estimation of source characteristics obtained over the 1000 

networks of sensors examined for each network size of 25, 50, 100 and 150 sensors. In the plots, the 

errors obtained with the full network of 244 are also included (values of “fine grid” in Table 5). The 

average error in horizontal distance (Figure 8a) decreases monotonically with increasing site of 

measurement network. The average error in vertical distance (Figure 8b) remains approximately 

constant for measurement networks consisting of 25 to 100 sensors and decreases for larger 

networks. The average error in emission rate (Figure 8c) decreases with increasing size of 

measurement network, but with a small rate. 

 

(a) 
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(b) 

(c) 

Figure 8: Average errors obtained for the different sizes of sensor networks that have been 

examined: (a) error in horizontal distance; (b) error in vertical distance; (c) error in emission rate 

 

4. Conclusions 

Substantial modifications to the inverse source term estimation method of Kovalets et al. (2011) 

have been introduced and tested in this paper. The modified approach consists of two-steps, 

separating the estimation of the location and emission rate of the source: 

1. The source coordinates are analysed using a correlation function of measured and calculated 

concentrations. 

2. The source emission rate is calculated by minimizing a quadratic cost function. 
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Our motivation for introducing the modifications was that in some cases of inverse modelling there 

is a typical problem called ‘overfitting’ effect according to which, the calculation errors which are 

introduced by a wrong source location estimation are compensated by error in estimated source 

rate. Thus, the resulting quadratic cost function reaches minimum for the wrong combined solution 

(source location and source rate). 

The validation of the new algorithm was performed by estimating the source location and emission 

rate of the MUST wind tunnel experiment, regarding atmospheric dispersion of a passive tracer from 

a continuous point source among buildings of urban-like environments. The computational grid 

resolution was examined first in order to achieve a grid independent solution of the flow field. The 

old and new / modified algorithms for inverse source term estimation have been inter-compared on 

both coarse and fine computational grids. The new method presented a more robust behaviour, and 

has resulted in a satisfactory determination of the source location (in the vertical and horizontal 

directions) and emission rate on both grids. The performance of the old method proved to be very 

sensitive to the selection of the value of the model error that enters in the cost function, giving from 

very poor to very good results. Therefore a correct assessment of the model error, within 1 order of 

magnitude, is important for the old method to be successful, especially for fine spatial grid 

resolutions with a large number of degrees of freedom in the quadratic cost function.  

However, not including prior information can be a drawback of the new method as well, in different 

settings than those studied in this paper. A possible way to include prior information in the new 

method would be to restrict the boundaries of the domain where the source could be located. This 

will be subject of a future study. 

It is noted that the above results have been achieved when all available measurements were used to 

solve the inverse problem. However, the performance of the method depends also on the number 

and the placement of sensors that provide the concentration data to be assimilated. Of significant 

interest for the practical application of the method in urban settings is the number of concentration 

sensors required to obtain a “satisfactory” determination of the source. In order to assess the 

dependence of the method’s performance on the size of the measurement network, calculations 

have been performed for the MUST experiment in which different networks, consisting of a given 

number of randomly selected sensors out of all available sensors, were used for source estimation. A 

level of 90% or higher probability of achieving good solution was reached for measurement 

networks consisting of at least 114 sensors. 

Future work includes further validation of the present methodology using other experiments with 

more complex geometric configurations (e.g., the experiments used by Efthimiou et al., 2016) and 

the extension of the method for time-varying releases (e.g., puff releases). 
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