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Abstract: 

The numerical time-dependent three-dimensional model (Kovalets and Maderich [ 24]) of the 

heavy gas dispersion in the atmospheric boundary layer has been improved by parameterizing 

momentum and heat fluxes on the surface of Earth using Monin-Obukhov similarity theory. 

Three parameterizations of heat exchange with the surface of Earth were considered: (A) 

formula of Yaglom and Kader [ 37] for forced convection, (B) interpolation formula for mixed 

convection and (C) similarity relationship for mixed convection (Kader and Yaglom [ 36]). 

Two case studies were considered. In the first study based on experiment of Zhu et al. [ 4], the 

interaction of an isothermal heavy gas plume with an atmospheric surface layer was 

simulated. It was found that stable stratification in the cloud essentially suppresses the 

turbulence in the plume, reducing the turbulent momentum flux by a factor of down to 1/5 in 

comparison with the undisturbed value. This reduction essentially influences velocities in the 

atmospheric boundary layer above the cloud, increasing the mean velocity by a factor of up to 

1.3 in comparison with the undisturbed value. A simulation of cold heavy gas dispersion was 

carried out in the second case based on field experiment BURRO 8. It was shown that both 

forced and free convections under moderate wind speeds significantly influence the plume. 

The relative rms and bias errors of prediction the plume’s height were 30%Hσ ≈  and 

10%Hε = −  respectively for parameterization B, while for A and C the errors were 

80%Hσ ≈  and 65%Hε ≈ − . It is therefore advised to use the simple parameterization B in 

dense gas dispersion models.  

 

Key Words: heavy gas dispersion, stratified flows, Richardson number, mixed convection, 

splitting methods 

Abbreviations: 
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LNG – liquefied natural gas, TKE – turbulent kinetic energy, MOST - Monin-Obukhov 

similarity theory 
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1. Introduction 

Clouds of hazardous gases can appear as a consequence of emergencies during production, 

transportation and storage of chemicals in gaseous or liquefied form. The released gas is 

usually denser than the ambient air because of differences in molecular weight and 

temperature, as well as presence of liquid aerosol and/or condensed water vapour. The density 

difference near the source can be comparable with air density. Buoyancy forces, advection by 

wind and mixing by the ambient turbulence are key factors in the dispersion of the heavy gas 

(Britter [ 1]). The buoyancy forces reduce turbulent exchange in the cloud and increase lateral 

spread of the cloud in a form of density current. The relief of the area and presence of 

obstacles can also affect movement and dilution of the cloud. Heat exchange of the cloud with 

the underlying surface is essential for the dispersion of the cold heavy gas clouds (Nielsen and 

Ott [ 2]). The buoyancy forces in the cold cloud decrease or even change their sign when 

influenced by turbulent mixing and heating from the underlying surface. As a result, the 

initially heavy cloud lifts off the ground (Meroney and Neff [ 3]). Finally, the gas moves as a 

neutrally buoyant gas. Under low wind conditions and/or large density differences, the density 

current covers roughness elements on the surface. Stable stratification in the upper boundary 

of the cloud can suppress the ambient turbulence, even resulting in laminarization of the cloud 

(Zhu et al. [ 4], Ding et al. [ 5], Briggs et al. [ 6]). Therefore, an effective roughness of the 

underlying surface can be reduced. This effect is reflected in the structure of the turbulent 

surface layer and further in the cloud dispersion. 

Models of different complexity were developed for calculation of heavy gas dispersion 

(see reviews of Meroney [ 7], Britter [ 1], Koopman et al. [ 8], Hanna et al. [ 9]). The 

puff/plume models (e.g. ALOHA ( Evans [ 10]), HEGADAS (Witlox [ 11]) and SCIPUFF 

(Sykes et al. [ 12]) are mostly intended for the use in real-time emergency situations, while 

elaborated 2D shallow layer models (e.g. TWODEE (Hankin and Britter [ 13]), DISPLAY-2 
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(Venetsanos et al. [ 14]) are suitable for risk studies, reconstruction of past accidents and 

emergency response planning, since they can deal with complex terrains. The 3D models (e.g. 

Edigarov [ 15], Bartzis et al. [ 16], Pereira and Chen [ 17], Chan [ 18]) are considered to be most 

suitable for reconstruction of past accidents and basic research (i.e. studies of specific 

processes in the presence of dense cloud, validation of different parameterizations), since they 

incorporate fewer assumptions and physical restrictions in comparison with simplified 

models. These models appear to be most appropriate for investigation of the physics of dense 

gas cloud interaction with the turbulent surface layer, because they do not contain the 

following important assumptions used in simple models: (i) Assumption about velocity of the 

gravity current (Britter [ 1]) which follows from the Boussinesq approximation. This 

assumption is not valid near the source where density difference can be comparable with air 

density, Therefore, it results in overestimation of the front passage time (Konig-Langlo and 

Shatzmann [ 19]); (ii) Assumptions about entrainment velocity (reviewed in Meroney [ 7]) are 

valid only for gravity current in a calm environment, whereas entrainment of dense gas into 

the atmosphere (extrainment) can exist in a turbulent environment (Nettervile, [ 20]); (iii) 

Assumptions about the form of analytical functions for calculating the vertical profile of 

concentration from the averaged concentration of the layer are in fact not universal (Zhu et al. 

[ 4]). Most importantly, even 2D models cannot describe the backward influence of the dense 

gas cloud on characteristics of the atmospheric surface layer. 

Accurate modeling of dense gas dispersion is complicated by the fact that the 

Boussinesq approximation is not applicable at the initial stage of the dense gas dispersion near 

the source, due to large initial variations of density. Hence, the unfiltered system of gas 

dynamics equations has to be solved and complexities caused by severe restrictions on the 

integration time step arise (Patankar [ 21]). In order to overcome these restrictions one can use 

fully implicit numerical schemes combined with the splitting method (Kovenya and Yanenko, 
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[ 22]). This approach was used by Edigarov [ 15] and Kovalets and Maderich [ 23]. In both 

models the equations of mass and momentum conservation were supplemented by an equation 

for enthalpy. Turbulence closure in Kovalets and Maderich [ 23] was performed using an 

equation for turbulent kinetic energy and algebraic expression for the turbulence length scale. 

Instead of using the equation for enthalpy, Kovalets and Maderich [ 24] used an equation for 

pressure derived from the equation of conservation of internal energy, together with an 

equation of state for the ideal gas. Such approach has certain advantages when splitting 

schemes are used for numerical integration. In addition, the k ε− model was used, which has 

advantages under highly non-stationary conditions. In both papers of Kovalets and Maderich 

[ 23,  24], the models were verified against laboratory and field data on isothermal 

instantaneous heavy gas releases in the calm environment.  

Several experimental data sets were created for the validation of the models of dense 

gas dispersion, for example, the Thorney Island field experiments (McQuaid and Roebuck 

[ 25]) and Kit Fox experiment (WRI [ 26]). In those experiments, instantaneous and finite 

duration isothermal releases of dense gas on the flat terrain covered by artificial roughness 

elements were studied. In BURRO (Koopman et al. [ 8]) and COYOTE (Goldwire et al. [ 28]) 

field experiments, dispersion of finite duration releases of the liquefied natural gas (LNG) was 

investigated. Aerosol dispersion was studied in Desert Tortoise experiment with ammonia and 

in GOLDFISH experiment with hydrofluoric acid HF (Hanna et al., [ 29] ) . 

The objectives of the present paper are (i) improvement of the 3D model of Kovalets 

and Maderich [ 24] with an emphasis on parameterization of momentum and heat fluxes on the 

Earth’s surface and (ii) modeling of two case studies. In the first study, interaction of 

isothermal heavy gas plume with the atmospheric surface layer will be investigated. The well 

documented experiment of Zhu et al. [ 4] with continuous isothermal release of CO2 in the 

wind tunnel will be simulated in order to demonstrate capability of the 3D model to describe 
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influence of the dense gas cloud on the turbulence characteristics and mean velocities in the 

surface layer. In the second case study, influence of mixed convection on the dynamics of the 

gas cloud and the cooling of subsurface layer will be investigated under the conditions of 

BURRO 8 experiment. The reason for this choice was the need of data on continuous releases 

without aerosol fraction from a well defined source (a pool with boiling LNG) with detailed 

background information.  

The paper is organized as follows. In the ensuing section the model and numerical 

solution techniques are described. In Section 3, the results of simulation of isothermal and 

cold heavy gas plumes in the turbulent surface layer are compared with the laboratory 

experiment of Zhu et al. [ 4] and BURRO field trial (Koopman et al. [ 27]).  

 

2. Model 

2.1 Governing equations 

The 3D time-dependent system of equations describing the turbulent motion of the heavy gas 

cloud under large Reynolds numbers can be written as follows: 
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where t  is time, ( )ix = x, y,z  are coordinates with 1,2,3i = , axis z  is directed vertically up 

from the Earth’s surface, ρ  is the density, ( ), ,iu u v w=  are components of the mean 

velocity vector, P is the pressure, (1/ )( / )s sc Pρ ρ= ∂ ∂  is the sound speed , C  is the mass 

concentration of the gas, g  is the gravity acceleration, /P ρΦ = , ijδ  is the Kronecker delta 

function. The primed and doubly primed symbols indicate the Reynolds and Favre 

fluctuations, respectively, ( )'' '' '' '', ,iu u v w= . The system of equations (1)-(4) is supplemented 

with the state equation for the ideal gas: 

 ( )(1 )a gP R C R C Tρ= − + , (5) 

where ,a gR R  are gas constants for the ambient air and gas, respectively.  

Unlike the models of stratified flows with small density deviations, for which the 

Boussinesq approximation is applicable, the development of models of turbulence for the 

flows with large deviations of density is far from satisfactory (Jones [ 31], Sarkar and 

Lakshmanan [ 32], Adumitroaie et al. [ 33]). Therefore, we used simple gradient relations for 

the turbulent stresses and fluxes which kept tensor invariance in density variable flows (Jones 

[ 31]): 
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 2 /t C kµν ε= , (8) 

where Tν  is eddy viscosity, ϕ  is scalar variable, k is the turbulent kinetic energy (TKE), ε is 

the dissipation rate of TKE, ϕσ is the turbulent Prandtl number, Cµ  is constant. 
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We used an auxiliary function /P ρΦ =  in order to derive equation (3) for pressure 

from the equation of transport of internal energy with Favre-Reynolds averaging. For the ideal 

gas, this function depends only on the temperature and concentration of gas. This makes 

possible to use gradient relations (7) also for the parameterization of the turbulent flux '' ''

iu Φ  

in equation (3). The transport equations of the k ε−  model for the flows with density 

variations are given by   
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where ( ) ( )'' '' 2 '' '/ 1/ /T i j i j i iG u u u x u P x s bρ ρ= − ∂ ∂ + ∂ ∂ = +  describes TKE generation due 

to interaction of the Reynolds stresses with gradients of the mean velocity (s) and generation 

or suppression of turbulence due to interaction of the density flux with the gradient of the 

mean pressure (b). In the Boussinesq approximation, b coincides with the traditional 

expression for the work of the buoyancy forces on the turbulent displacement of gas. The 

turbulent flux of the density is also calculated using the gradient formula (Jones [ 31], Sarkar 

and Lakshmanan [ 32])  

 '' ' .t
i

i

u
xρ

ν ρ
ρ

σ
∂

= −
∂

 (11) 

The turbulent Prandtl number ϕσ , following to Chan [ 18], was defined from the relationship 

Ueda et al. [ 34]: ( ) ( )2

0 1 Rf 1 10 Rfϕσ σ= − − for all scalars. Here, the flux Richardson 

number Rf /b s= , and constant 0 1.015σ = . The values of the constants of the turbulence 

model are standard: 0.09Cµ = , 1 1.44C ε = , 2 1.92C ε = . 
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2.2 Boundary and initial conditions 

Let us consider boundary and initial conditions of the system of equations (1)-(5), 

supplemented with the turbulence model (6)-(10). Near the Earth’s surface 0z =  below the 

first computational level 1z z< , all variables were assumed to satisfy the relationships of the 

Monin-Obukhov similarity theory (MOST). The MOST was developed for a stationary and 

horizontally homogeneous surface layer (Monin and Yaglom [ 35]). Applicability of the 

MOST-based boundary conditions is limited to the small ratio of characteristic time of 

turbulence to the characteristic time of significant changes of averaged variables and 

conditions of smooth terrain. There is no universal theory for the cases in which these 

conditions are not fulfilled, but for engineering applications MOST is usually considered 

suitable (Bartzis et al. [ 16]). 

In the present studies, at the first computational level, the turbulent fluxes through the 

bottom surfaces of the computational cells adjacent to the bottom surface of the computational 

domain of all variables were calculated according to MOST. For the velocities it resulted in:  
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2 21 1
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z z z z
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w u u
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where 1( )U U z=  is the absolute value of the horizontal component of velocity at the first 

computational layer, ' '

*u u w= − is the friction velocity, defined either for neutral 

conditions 
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1 0ln( / )

U
u

z z

κ
=  (13) 

or from the general MOST relations, as described below. Here 0.39κ =  is von Karman 

constant . 
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The absence of the gas flow through the solid boundary was assumed everywhere 

except for the source of gas: 

 

1 2
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The heat exchange with the underlying surface is described by the boundary condition: 
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Here, 
sT  is the temperature of the underlying surface, and sq  is the turbulent flux of 

temperature through the surface. The methods of calculating sq  are given in the next section. 

From (15), together with (14) and (5), it follows:  
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where the value of C is taken at 1z z= .  

Boundary conditions for the turbulent kinetic energy and dissipation rate were defined 

from the assumption of the local equilibrium of the developed turbulence near the Earth’s 

surface i.e. b s ε+ = . For 1z z<  this relation is approximately 
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where dC  is constant. When the heat flux through the Earth’s surface was absent, it was 

assumed that the first term in (17) dominates in the generation of the TKE near the surface 

and the suppression of turbulence by the stable stratification was not taken into account. In 

this case, from (17) and from the relationships for the turbulent logarithmic layer over the 

horizontal surface we obtained  
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The combination of (18) and (8) yields 3/ 4

dC Cµ= . 

In the case of the heat exchange of the cold gas with the surface: 
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where z Lζ = − , ( )3

* sL u qκβ= −  is the Monin-Obukhov length scale, / sg Tβ =  is the 

buoyancy parameter, and ,m Tϕ ϕ  are the so-called stability functions (Monin and Yaglom, 

[ 35]). A general form of the functions ,m Tϕ ϕ  covering all ranges of positive values of 

z Lζ = −  is unknown. However, in Kader and Yaglom [ 36], three asymptotic forms of these 

functions were established, based on similarity considerations and experimental data. 

Brutsaert [ 38] proposed interpolation formulas for ,m Tϕ ϕ  which were based on these 

functions:  
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Differentiating (17) by z , using (19) and assuming that 
1

1/ 4

T z z
C k zµν κ

<
=  we found 

boundary conditions for k  and ε : 
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Under neutral stratification ( 0, 1s m Tq ϕ ϕ= = = ) the relations (21) reduced to equivalent 

boundary conditions (22): 
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In order to determine the value of the temperature of the surface sT , the coupled 

problem of the heat transfer in the surface layer of the Earth was solved because the heat 

transfer in the Earth can significantly influence the dynamics of the cold of gas cloud (Nielsen 

and Ott [ 2]). The heat transfer in the Earth surface layer was calculated with the use of the 

equation of heat conduction in the soil:  
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T T
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∂ ∂
=
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 , (24),

 

where sρ  and psc  are the density and specific heat capacity of the soil, respectively, χ  is the 

heat conductivity of the soil and axis z  is directed downward. The initial temperature 

distribution in the soil was taken to be constant: 0( ,0) sT z T= . The boundary conditions are  

  
' '

0

0

;s s sz Hs
z
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с T w T T T

z
ρ χ ∞=

=

∂
= = =

∂
,      (25) 

where T∞  is undisturbed soil temperature at large depth.  

On the upper boundary of the computational domain, distributions of all variables 

correspond to the atmospheric conditions undisturbed by the gas release. Turbulent 

characteristics in the surface layer of the atmosphere can be determined from the MOST. The 

computational domain was oriented in the direction of the main wind vector near the surface. 

On the lateral boundaries, where the flow approached the domain, undisturbed distributions of 

all variables were used as boundary conditions. On the other lateral boundaries, the condition 

/ 0ϕ∂ ∂ =n  for all variables was used, where n is the normal vector to the lateral boundary. 

The initial undisturbed conditions for all meteorological parameters were calculated from the 

MOST theory. 
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2.3 Parameterization of the heat exchange with the surface 

A. Parameterization using the relationships for the forced convection 

In this approach, the heat flux from the surface was represented as:  

 ( )( )' '

1swT T T zλ= − , (26) 

where the heat transfer coefficient λ  was defined by equations of Yaglom and Kader 

[ 37] for the forced convection:  

 
( )

*

1/ 2 2/32.12ln( / ) 0.55(Pr 0.2) 9.5

u

z h h
λ

+

=
+ − +

, (27) 

where h  is the average height of the roughness elements, which is related to the roughness 

height as 030h z≈  (Monin and Yaglom [ 35]), /h hu ν+ ∗= , ν  and Pr  are molecular viscosity 

and the Prandtl number, respectively. The friction velocity was determined from (13). 

B. Parameterization using interpolation formula for the heat transfer coefficient 

In this approach, the heat flux from the surface was also represented with the help of (26). 

However, the heat transfer coefficient was calculated using simple interpolation formula:  

   ( )( )( )1/ 3

1 2 1 0 / PrSC T Tλ λ λ λ βν= + = + − ,         (28) 

which accounted for both forced and free convection asymptotic regimes. Here, 1λ was 

defined by (27), 2λ  accounted for the free turbulent convection (Zilitinkevich [ 39]) and 

/ sg Tβ = . The value of constant 0C  was obtained by different authors in the range of 0.1-

0.21 (Zilitinkevich [ 39]). In this study, 0 0.21C =  was adopted. The friction velocity was 

determined from (13). 

C. Parameterization using similarity relationships for mixed convection 

In this approach, vertical profiles of temperature and wind velocity near the wall are 

represented in the similarity form (Monin and Yaglom [ 35]): 
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where 0 , Tz z  are roughness lengths for momentum and temperature. Functions ,m TΨ Ψ  are 

defined as: 

 ( )
1 /

,

, 1

0

1 ( )
/

z L

m T

m T z L d
ϕ ς

ς
ς

−
Ψ = ∫ . (30) 

Substituting (20) into (30) and calculating resulting integrals analytically, Brutsaert [ 38] 

obtained functions ,m TΨ Ψ  as 
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The temperature roughness length 0Tz  was determined in Yaglom and Kader [ 37] as  

 ( )( )1/ 2 2 /3

0 exp( / 0.55(Pr 0.2) 9.5 / 2.12)Tz h hu ν∗= − + . (32) 

With given values of 1 1( ), ( )T z U z , the system of nonlinear equations (29), (31), (32) was 

solved by iterations for the unknown values of u∗ , '' ''w T , which were substituted into (21) 

in order to obtain boundary conditions for k and ε . 

 

2.4 Numerical solution techniques 

Numerical techniques for solving equations (1)-(4), (8)-(9) mainly follow the approach of 

Kovalets and Maderich [ 24], with modifications caused by the use of the MOST-based 

boundary conditions. Implicit finite-difference splitting schemes upon spatial directions and 
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physical processes were used (Kovenya and Yanenko [ 22]). In these splitting schemes, 

calculations were performed in two stages. In the first stage, the velocity components and the 

pressure were computed. In the second stage, other variables (density, gas concentration, 

turbulent kinetic energy and dissipation rate) were computed. This approach allowed for high 

accuracy mass conservation and an increased stability of the scheme. The finite-volume 

method (Patankar [ 21]) was used in order to discretize the governing equations. The scheme 

described by Patankar [ 21] was applied to the finite-difference approximation of the operators 

of convection-diffusion.  

 

3. Results 

3.1 Simulation of the laboratory experiment with continuous isothermal release (Zhu et 

al. [ 4]) 

In order to study interaction of an atmospheric surface layer with an almost isothermal heavy 

gas cloud, we reproduced numerically conditions of laboratory experiments by Zhu et al. [ 4]. 

Those experiments were conducted in the wind tunnel with height 2.1 m, width 3.7 m. and 

length 18.3 m. An aerodynamically rough surface was created with the use of the roughness 

elements (plates with height 0h =25 mm and width 5 cm). In the experiments, the stationary 

flow of carbon dioxide (CO2) from a source located at the bottom of the wind tunnel into the 

boundary layer was studied. The source was located at a distance of 8.95 m from the 

beginning of the tunnel. The density of the CO2 under the atmospheric pressure 

was 0 1.72g aρ ρ= . Before the beginning of the release, a neutral zero-pressure boundary layer 

was established. The height of the boundary layer in the tunnel rδ  was approximately 1m. 

The velocity rU  of the flow at the height rδ  in experiments was 0.5, 0.75, 1.0 and 2.0 m/s. 

Correspondingly, the Reynolds number varied from 3⋅10
4
 to 10

5
. The roughness parameter 
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was 0 0.002z ≈ m. The diameter of the source was 0.104sD = m and the release rate 

0.059sW =  m/s.  

The computational domain was 8 3 1× ×  m. It was approximately equal to the size of 

the test section of the wind tunnel and the height of the boundary layer. The source was 

located at a distance 1x =  m from the beginning of the computational domain. The grid size 

in all directions was variable. Near the source, the grid size in horizontal directions was the 

smallest: 0.1x y∆ = ∆ =  m. The grid size in vertical direction ∆z was the smallest near the 

surface: 0.001z∆ = m. The calculations were performed in two stages. In the first stage, an 

undisturbed boundary layer was calculated in order to reproduce measured stationary profiles 

of mean velocity and TKE. In the second stage, the undisturbed fields of velocity, TKE and 

dissipation rate were used as initial conditions and the upstream boundary condition.  

The effect of buoyancy forces on the distribution of the ground-level concentration is 

shown in Figure 1 where calculated distributions of concentration for neutrally buoyant and 

heavy gases are shown. The heavy gas cloud covers a much larger area than the neutral gas 

cloud does. The same pattern was observed in experiments with the hydraulic flume (Britter 

[ 40]) where salt water from a source flew into a flow of fresh water. Figure 2 shows 

experimental and calculated distributions of the height of the cloud VL  along the axis of 

symmetry of the wind tunnel for different wind velocities. The value of VL  both in 

experiments and calculations was defined as the height where concentration is reduced to 10% 

of the ground level value. The calculated height of the cloud changes slowly initially due to 

the damping of the turbulence by the stable stratification in the gas cloud. However, it 

increases subsequently due to the turbulent entrainment. Britter [ 40] estimated the lateral 

length scale HL  and vertical scale VL  of a heavy gas plume assuming the superposition of 

buoyancy driven lateral spread and longitudinal advection by wind without mixing. The 
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asymptotic values of height ( )'

VL x  and width ( )'

HL x  of plume at a distance from the heavy 

gas source Sx D>>  are 

1/ 3 2 / 30

r

1

2

V
B

B B

L q
L x

L C U

− − ′
=  

 
,         

2 / 3

2H
B

B B

L x
C

L L

′  
=  

 
,                                           (33) 

where 
0 0

3
r/BL q Ug′=  is the buoyancy length scale, 0 0( ) /a agg ρ ρ ρ′ = −  is the initial 

buoyancy, 0q  is the volume flux in the source, 0.25BC ≈  is an empirical constant. However, 

dependence (33) for '

VL  does not agree with experiments and simulations in Figure 2, where 

an increase of the cloud height due to mixing is observed, in contrast to the collapse of the 

cloud predicted by (33). At the same time, simulated dependences of HL  (curves 2 and 3 in 

Figure 3a) approach the analytical dependence (33) (curve 1). It implies that the lateral 

gravitational spread of the heavy gas cloud is much larger than the horizontal turbulent 

diffusion. The velocity of the gravitational lateral spread is 1/2( ( ) ( ))VV g x L x′∼ . Hence, the 

reduction of buoyancy ( ) ( ( ) ) /a ag x g xρ ρ ρ′ = −  caused by mixing of the cloud with the 

ambient air should be compensated by an increase of the height of the cloud VL  in order to 

agree with dependence (33) for HL (Britter [ 40]). Consequently, the relationship H HL L′ ∼  

occurs when similarity relationship 1 2Π Π∼  holds, where ( ) ( )1П V VL x L x′=  and 

( )' '

2 0П g x g= . The results of the calculations in Figure 3b confirm this similarity for large 

distances from the source, i.e. for small values of ( )'g x  and 1Π . 

The buoyancy forces suppress turbulent mixing, but at the same time the larger surface 

area of the plume enhances the entrained volume of the ambient air. Therefore, the resultant 

distribution of the ground-level concentration at the axis of symmetry of the cloud 

( ),0,0C x  depends weakly on the buoyancy 0g′  in the source (Britter [ 1]). Neff and 



 19

Meroney [41], on the basis of laboratory experiments with continuous isothermal release of a 

heavy gas on an aerodynamically smooth surface, established an empirical scaling for the 

ground level concentration at a downwind distance x  as
 

( ) ( )( )3/5 '1/5

0 0,0,0 / /rC x C xU q g= Ψ . As seen in Figure 4, both the measured (Zhu et al. [ 4]) 

and simulated volume concentration distributions ( ),0,0volC x  also agree with this scaling 

for a rough surface. The ground-level concentration at a large distance decays slightly slower 

than the asymptotics ( ) 5/ 3

volC x x−
∼

 
for neutrally buoyant gas (Monin and Yaglom [ 35]). 

The spikes in the experimental data at small distances from the source were caused by 

individual roughness elements.  

The vertical profiles of the mean velocity and concentration of gas, TKE and the 

Richardson number ( ) ( ) ( )a

2
g/Ri=- /z u zρ ρ∂ ∂ ∂ ∂ are shown in Figure 5. The vertical 

turbulence intensity ' 2w  measured by Zhu et al. [ 4] and the calculated values of ( )2 / 3k in 

Figure 5 (c) are normalized on the local velocities of the flow ( )u z . The experimental and 

calculated profiles in Figure 5 agree well. As is seen from the figure, the k ε−  turbulence 

model predicts suppression of the turbulence due to the stable stratification in the cloud in 

accordance with the experiment. This effect is maximum in the upper part of the cloud where 

the density gradient is the largest. The profiles of the Richardson number in Figure 5 (d) have 

maximum coinciding with the level where stratification is the largest. The calculated vertical 

profiles of the turbulent shear stress /tu w u zν′′ ′′− = ∂ ∂  at different distances from the 

source are presented in Figure 6. The damping of the turbulence by the stratification and 

diminishing of the velocity shear at the upper boundary of the cloud result in a characteristic 

minimum of the shear stress. The height of this minimum is proportional to VL  (Figure 2). 

The maximum calculated reduction of the turbulent shear stress at the top of the cloud was 
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five times the undisturbed value. The suppression of the turbulence due to the stratification 

resulted in reduction in the drag forces and thus acceleration of the mean velocity in the 

boundary layer above the top of the cloud compared with the undisturbed boundary layer. 

This effect is observed both in experiments and in the simulations shown in Figure 5 (a) and 

(b). The calculated maximum increase of the mean velocity due to this effect was 1.3 of the 

undisturbed value. The vertical profile of the neutrally buoyant gas concentration was close to 

the Gaussian, while the vertical profile of the heavy gas could be approximated by an 

exponent (Zhu et al. [ 4]). For sufficiently large Richardson numbers, the entrainment of the 

air through the upper boundary of the cloud was suppressed near the source, as can be seen in 

Figure 2 (curve 1) which describes dependence of the cloud’s height on the distance from the 

source. 

The calculated surface friction velocity 
1

'' ''

*
z z

u u w
=

= −  also decreased near the 

source as is shown in Figure 6. It is explained by the fact that a heavy gas, covering the 

roughness elements, serves as a new underlying surface for the ambient flow of the air. The 

calculations showed that the corresponding displacement height ( )
0

/a r

r

u

z

u u U dz
δ

δ  − = ∫  

was near 10-12 mm which was comparable with the height of the roughness elements. Here 

au  is the velocity of the undisturbed flow. The velocity in the bottom part of the heavy gas 

cloud was reduced in comparison with the undisturbed flow (Figure 5 a) as a result of the 

displacement of the boundary layer. 

The use of the implicit finite-difference scheme allowed us to solve efficiently the 

unfiltered equations of compressible flow at a low Mach number. Lets us consider now the 

role of density variations in the flow dynamics. The parameter 

, ,

1
max / max k

i j z k
k

d u

dt x

ρ
β

ρ

   ∂
=      ∂   

is the maximum of the ratio of the term (1/ )( / )d dtρ ρ  
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to the largest by absolute value component of the divergence term /k ku x∂ ∂ in the same point 

of the computational domain. The maximum value of the parameter is 3β = . It is achieved 

when all three components /k ku x∂ ∂  are equal. This parameter characterizes the error 

introduced into the continuity equation by the Boussinesq approximation. Variation of β  with 

distance from source for 0.5rU = m/s is shown in Figure 7. The parameter β  achieved its 

maximum value 2β =  at a distance 1 m, falling to the values less than 0.1 after 2 m 

downwind. It is important that most changes in the structure of turbulence in this experiment 

took place in the first 2 m downwind from the dense gas source, where the Boussinesq 

approximation is not valid and where compressibility should be taken into account in the 

continuity equation.  

 

3.2 Simulation of the field experiment with a cold gas release (Koopman et. al., [ 27]) 

A study of a cold heavy gas dispersion in the atmosphere was carried out using the conditions 

of field experiment BURRO 8 in which the dispersion of liquefied natural gas (LNG) was 

studied (Koopman et al. [ 27]). The Burro Series of LNG spill experiments was performed at 

the Naval Weapons Center, China Lake, California. In experiment BURRO 8, approximately 

40 m
3
 of LNG was poured into a circular water basin at spill rate of approximately 117 kg/s. 

The diameter of the basin was 58 m. The measurements of concentration were conducted at 

radii of 57, 140, 400 and 800 m from the source. The wind speed was approximately 1.8 m/s 

and atmosphere was slightly stable (category E). The dense gas dispersion in that experiment 

was modeled under the assumptions of a flat terrain, a circular source with a constant 

diameter 58 m and a release rate 117 kg/s, lasting 107 seconds with the gas temperature 

110exitT K≈ ° . The horizontal grid size near the source was approximately 17 m increasing in 

downwind and crosswind directions from the source and the vertical grid size was 

approximately 0.1 m near the ground, increasing vertically.  
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Simulated vertical sections of the temperature along wind at 180t s= , with and 

without heat exchange with the surface, in Figure 8 show that the heat exchange results in the 

growth of the height of the center mass of the cloud and in formation of a convective 

boundary layer at the bottom of the cloud. The isolines of the temperature in the cloud 

become closed and the cloud lifts up with distance. Therefore, the difference of temperature 

between cases (a) and (b) in Figure 8c is maximum near the surface, well away from the 

source. 

Figure 9 shows the measured and simulated crosswind volume concentration 

distributions at a distance 140 m from the source at the time 180t s=  from the release start. 

Three cases of calculations are shown: (i) using relationships for the heat exchange which 

account for the forced convection (parameterization A), (ii) using relationships which account 

for the mixed convection of Brutsaert [ 38] (parameterization C) and (iii) using interpolation 

formula for the mixed convection (parameterization B). The characteristic maximum in the 

measured and calculated concentration distributions in Figure 9 shows the beginning of the 

lifting of the cloud mentioned above. The parameterization B results in a significantly higher 

height of the cloud ( ≈ 1.5 times) compared with the other parameterizations. This hight 

estimation is the closest to the experiment as shown in Figure 9a. 

Let us estimate the difference between the experimental data and the results of the 

simulations. Let us define the height of the cloud H  by the position of the isoline of the 

concentration 1%C = . For the prediction of H at a given cross-section, the rms and bias 

errors Hσ , Hε  are, respectively: 
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Here, expH  and mH are experimental and computed values, respectively, 100Y = m is the 

length of the cross-section at the distance 140 m from the source (Figure 9). It was taken for 

positive values of y , where the terrain is flatter. For the parameterization B, 30%Hσ ≈ , 

10%Hε = − , while for A and C both errors were almost the same: 80%Hσ ≈ , 65%Hε ≈ − . 

The comprehensive parameterization C failed to bring an improvement of the results of the 

simulation and, therefore, a simple parameterization B for the mixed convection can be 

recommended for use in dense gas dispersion models.  

In Figure 10, the maximum centerline volume concentrations observed in BURRO 8 

experiment are shown together with the predictions of the model at the height 1 m, where gas 

sensors were placed. Four variants of the predictions are given to show the role of different 

parameterizations of the heat exchange. In the worst case, the heat exchange is not taken into 

account at all. It results in underestimation of the maximum concentration close to the source 

by a factor of 1/4, because a relatively small height of the cloud was predicted at the sensor 

level. Far from the source, the values of concentration were overestimated, because the 

dilution was reduced by the stable stratification in the cloud. When the heat exchange was 

parameterized with the relationships which accounted for the forced convection 

(parameterization A), the agreement was good in the region far from the source. However, 

near the source, where velocities in the plume are relatively small, this approach also failed to 

predict the observed concentration. Using the parameterization C in order to account for the 

mixed convection did not improve the results either. The best agreement for all distances from 

the source was achieved using the simple interpolation formula for the heat exchange 

coefficient (parameterization B), when in relationship (28) both forced and free convection 

mechanisms were taken into account. However, in the nearest point to the source, the 

maximum observed concentration was underestimated by a factor of 1/2. This fact can be 
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explained by sensitivity of the measurements in this point to characteristics of the pool (e.g., 

time varying source rate).  

Free convection dominates the forced convection near the cold gas source due to a 

large temperature difference between the gas cloud and the surface near the source. As a 

result, coefficient 2λ  describes the free convection. In addition, due to the reduction of the 

horizontal wind speed near the source, because of the vertical displacement of the boundary 

layer considered in Section 3.1, the heat exchange coefficient of the forced convection 1λ  

decreases. This analysis is confirmed by Figure 11 which shows the spatial distributions of the 

heat exchange coefficients 1λ and 2λ in parameterization B. The reduction of 1λ  and the 

growth of 2λ  near the source, as well as the reduction of 2λ  and the increase of 1λ  far from 

the source are seen.  

Let us consider now the effect of the parameterizations of the heat exchange with the 

Earth’s surface on the cooling of the Earth’s surface. The analytical solution of the heat 

transfer problem (24)-(26) for the heat flux ( , ) / ,s sq z t c T zρ χ= ∂ ∂ was obtained by Nielsen and 

Ott [2] in the case of a constant heat transfer coefficient λ  and a sudden forcing by a constant 

gas temperature at surface
 gT . The solution for a non-dimensional heat flux at the surface 

describes the forced convection for a constant wind velocity: 

 ( ) ( ) ( )1/ 2

1 0, exp erfcq t t t −= ɶ ɶɶ  (35), 

where ( ) ( ) ( )1 0, 0, / 0,0q t q t q=ɶ , ( ) ( )( )( )2
2 0,0 / 0,s s gt tq c T t Tρ χ= −ɶ . The solution (35) is 

given in Figure 12 (solid curve). As is seen from the figure, the heat flux from the soil 

substantially decays with time even for a constant gas temperature. In the case of the mixed 

convection under constant wind velocity and constant gas temperature, the heat transfer 

coefficient 
1 2λ λ λ= +  defined by relationships (28) (parameterization B) consists of constant 

value 1λ  and variable 2 ( )Tλ λ= ∆ , which depends on the temperature difference between the 

gas and the Earth’s surface ( )0,gT T T t∆ = − . In this case, the non-dimensional heat flux 

through the surface is a function of two parameters:  

 ( ) ( )0, ,mixq t F t λ= ɶɶɶ , (36) 
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where 2 0 1( ) /Tλ λ λ= ∆ɶ . It is obvious that: ( ) ( )10
0, 0,mixq t q tλ→→ɶ

ɶ ɶ . In order to estimate the 

effect of the mixed convection on the heat flux from the soil, the problem (24)-(25), (26), (28) 

was solved numerically with constant gas temperature 
gT  and constant horizontal wind 

velocity. The results obtained for different values of parameter λɶ  are shown in Figure 12. As 

follows from the presented results, the dependence of function F on λɶ  is essential only for 

5λ <ɶ , whereas for large λɶ  it tends to the free convection regime: ( ) ( )2,F t F t
λ

λ
→∞
→
ɶ

ɶ ɶ . In the 

case of BURRO 8 experiment, the simulated by a 3D model maximum of the reduction of the 

heat flux due to the cooling of the Earth’s surface was 1 0.95q ≈ɶ
 
 in parameterization A and

 

0.83mixq ≈ɶ  in parameterization B. Therefore, the relative contribution of the mixed 

convection to the cooling of the Earth’s surface in BURRO 8 experiment was 

( )2 1 1 13%q q q− ≈ɶ ɶ ɶ . 

 

CONCLUSIONS 

The presented paper improves the numerical three-dimensional model of a heavy gas 

dispersion in an atmospheric surface layer developed earlier by Kovalets and Maderich [ 24]. 

It also presents the results of a numerical simulation of the interaction of a heavy gas cloud 

with an atmospheric surface layer. The model used is based on the unfiltered system of gas-

dynamic equations which allow for reproducing the dynamics of a heavy gas cloud both near 

the source, where the effects of density variations are essential, and far from the source, where 

the Boussinesq approximation is valid. The system of model equations was used in a form of 

equations for density-velocity-pressure-concentration. This has essential numerical 

advantages in the case of the ideal gas law. The turbulence was parameterized using the k-ε 

model. Three parameterizations of the heat exchange with the Earth’s surface were 

considered: (A) formula of Yaglom and Kader [ 37] for the forced convection, (B) 

interpolation formula for the mixed convection and (C) approach of Brutsaert [ 38] based on a 

scaling relationships of Kader and Yaglom [ 36]. The problem of the cold gas dispersion was 
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coupled with the problem of the heat transfer in the surface layer of the Earth. This model is 

intended mainly for basic studies. 

Two case studies were considered. In the first study based on experiment of Zhu et al. 

[ 4], interaction of an isothermal heavy gas plume with an atmospheric surface layer was 

simulated. It was shown that stable stratification in the cloud essentially suppresses the 

turbulence in the plume, reducing the turbulent momentum flux by a factor of down to 1/5 in 

comparison with the undisturbed values. This reduction substantially influences velocities in 

the atmospheric boundary layer above the cloud, increasing the mean velocity by a factor of 

up to 1.3 in comparison with the undisturbed values. The turbulent shear stress at the surface 

is also diminished in the region close enough to the source due to the displacement of the 

atmospheric boundary layer by the heavy gas. The characteristics of the atmospheric 

boundary layer in the presence of a heavy gas cloud and concentration distributions calculated 

with the use of the simple isotropic k-ε turbulence model agree well with the observations in 

experiments of Zhu et al. [ 4]. This agreement can be explained by the fact that the lateral 

spreading of the plume is dominated by the buoyancy forces, whereas the turbulent diffusion 

significantly influences only the vertical spreading.  

In the second case study, simulation of a cold heavy gas dispersion and comparison 

with field experiment BURRO 8 showed significant influence of both forced and free 

convection components of the mixed convection under the moderate wind speeds. Three cases 

were studied: (i) using relationships of Yaglom and Kader [ 37]    for the heat exchange which 

accounted for the forced convection (parameterization A), (ii) using interpolation formula for 

the mixed convection (parameterization B) and (iii) using relationships of Brutsaert [ 38] 

which accounted for the mixed convection of (parameterization C). It was shown that 

parameterization B for the mixed convection significantly improved results of simulation in 

comparison with the calculations with the forced convection only. The comprehensive 
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parameterization C, however, failed to bring a significant improvement of the results of the 

simulation. This fact can be considered a general failure of MOST to describe adequately the 

nearly shear–free convective boundary layer, due to the existence of large-scale coherent 

structures (buoyancy driven convective cells) which are neglected by MOST (see 

Zilitinkevich et al. [ 41]). It is therefore advised to use the simple parameterization B in dense 

gas dispersion models. The free convection mostly affects the cold dense gas dispersion 

sufficiently close to the source where temperature differences are large and the forced 

convection is damped due to the effect of the boundary layer displacement as discussed in 

Section 3.1.  
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CAPTIONS 

Figure 1 Calculated ground-level concentration of heavy gas (a) and neutrally buoyant gas (b) 

with wind velocity at 1m height
 

0.5rU =  m/s. The isolines correspond to the values of 

concentration: 0.005, 0.01, 0.05, 0.1, 0.2, 0.3. 

Figure 2 Height of the cloud vs. distance x from the source for different velocities at 1m 

height rU  . Here ■: experimental data and calculations (curve 1) with 0.5rU =  m/s; ×: 

experimental data and calculations (curve 2) with 0.75rU =  m/s; curve 3: calculations for the 

case of neutrally buoyant gas and 0.5rU =
 
m/s. 

Figure 3 Similarity of the lateral and vertical dimensions of the cloud. (а) Lateral dimension 

of the cloud HL  vs. distance x  from the source. Both HL and x are normalized on buoyancy 

length scale 
0 0

3
r/BL q Ug′= , where '

0g  is the initial buoyancy, 0q is the volume flow rate of the 

gas in the source, rU : wind velocity at 1m height. Curve 1: similarity relationship (33); 

curve 2: calculations with 0.5rU = m/s, BL =0.058 m; curve 3 : calculations with rU =0.75 

m/s, BL =0.017 m. (b) Parameter 1/ 2
1 ( / )V VL L′Π =  vs. 1/ 2

2 0( ( ) / )g x g′ ′Π = , where VL , '

VL are 

the simulated and theoretical (33) heights of the cloud, ( )'g x  is the calculated buoyancy of 

the cloud. Curve1: calculations with rU =0.5 m/s; curve 2: dependence 1 2Π = Π . 

Figure 4 Experimental (Zhu et al. [ 4]) and calculated decay of the ground level gas 

concentration normalized on source gas concentration ( ,0,0)volC x  with distance x for 

different rU . Distance x is normalized by the length scale 3/5 '1/5

0 /NM rL q g U=  (Neff and 

Meroney [ 41]), where '

0g  is the initial buoyancy, 0q  is the volume flow rate of the gas in the 

source.  
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Figure 5 Experimental (Zhu et al. [ 4]) and calculated vertical profiles of (a) longitudinal 

component of velocity u ; (b) concentration C , normalized on source gas concentration SC ; 

(c) turbulent intensity of the vertical component of wind velocity ' 2w  normalized on the 

local wind velocity ( )u z ; (d) Richardson number Ri  at distance x =2.1 m from the source 

and 0.5rU = m/s. Symbols “•” and “○” denote the experimental data for the heavy and 

neutrally buoyant gas, respectively. Solid and dashed curves denote calculated data for the 

heavy and neutrally buoyant gas, respectively. 

Figure 6 Calculated vertical profiles of the vertical turbulent momentum flux '' ''u w− at 

different distances from the source  x =0.6 m (1); x =1.2 m (2); x =2.1 m (3). 

Figure 7 Calculated variation of the parameter 
, ,

1
max / max k

i j z k
k

d u

dt x

ρ
β

ρ

   ∂
=      ∂   

 with 

distance x from the gas source. 

Figure 8 Calculated temperature distribution along wind in BURRO 8 case study at t=180 s: 

(a) without heat exchange with the Earth’s surface; (b) taking into account the heat exchange 

with the surface; (c) temperature difference ( K° ) between (b) and (a) cases. 

Figure 9 Crosswind distribution of volume concentration in BURRO 8 case study at distance 

140 m and t=180 s: (a) measurements (Koopman et al. [ 8]); ( b) calculations with 

parameterization A; (c) calculations with parameterization B; (d) calculations with 

parameterization C.  

Figure 10 Comparison of measured and simulated maximum centerline volume 

concentrations along wind in BURRO 8 case study.  



 34

Figure 11 Spatial distribution of the heat exchange coefficients in BURRO 8 experiment at 

t=100 s; (a) heat exchange coefficient of the free convection 2λ ; (b) heat exchange coefficient 

of the forced convection 1λ . The scale λ for both coefficients is the same. 

Figure 12 Dependence of the non-dimensional heat flux ( ) ( ) ( )/ 0q t q t q=ɶ  through the 

Earth’s surface on the non-dimensional time ( ) ( )( )( )2
2 0 / 0,s s gt tq c T t Tρ χ= −ɶ for different 

2 1/λ λ λ=ɶ . Here, ( )q t is the heat flux through the surface, t  is time, sρ , sc , χ  are density, 

specific heat capacity and heat conductivity of soil, respectively, ( )0,T t  is the temperature of 

the Earth’s surface, gT is the constant cold gas temperature. The heat exchange coefficient 

1 2λ λ λ= + , where 1λ  and 2λ  correspond to parameterization B. Analytical solution (35) is 

the case of constgT = , 1 constλ = , 2 0λ = . 
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Figure 1 Calculated ground-level concentration of heavy gas (a) and neutrally buoyant gas (b) 

with wind velocity at 1m height
 

0.5rU =  m/s. The isolines correspond to the values of 

concentration: 0.005, 0.01, 0.05, 0.1, 0.2, 0.3. 
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Figure 2 Height of the cloud  vs. distance x from the source for different velocities at 1m 

height rU  . Here ■: experimental data and calculations (curve 1) with 0.5rU =  m/s; ×: 

experimental data and calculations (curve 2) with 0.75rU =  m/s; curve 3: calculations for the 

case of neutrally buoyant gas and 0.5rU =
 
m/s.
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Figure 3 Similarity of the lateral and vertical dimensions of the cloud.  (а) Lateral dimension 

of the cloud HL  vs. distance x  from the source. Both HL and x are normalized on buoyancy 

length scale 
0 0

3
r/BL q Ug′= , where '

0g  is initial buoyancy, 0q is volume flow rate of gas in the 

source, rU : wind velocity at 1m height. Curve 1: similarity relationship(33); curve 2: 

calculations with 0.5rU = m/s, BL =0.058 m; curve 3 : calculations with rU =0.75 m/s, 

BL =0.017 m. (b) Parameter 1/ 2
1 ( / )V VL L′Π =  vs. 1/ 2

2 0( ( ) / )g x g′ ′Π = , where VL , '

VL are the 

simulated and theoretical (33) heights of the cloud, ( )'g x  is the calculated buoyancy of the 

cloud. Curve1: calculations with rU =0.5 m/s; curve 2: dependence 1 2Π = Π . 
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Figure 4 Experimental (Zhu et al. [ 4]) and calculated decay of the ground level gas 

concentration normalized on source gas concentration ( ,0,0)volC x  with distance x for 

different rU . Distance x is normalized by the length scale 3/5 '1/5

0 /NM rL q g U=  (Neff and 

Meroney [ 41]), where '

0g  is the initial buoyancy, 0q  is the volume flow rate of the gas in the 

source.  
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Figure 5 Experimental (Zhu et al. [4]) and calculated vertical profiles of (a) longitudinal 

component of velocity u ; (b) concentration C , normalized on source gas concentration SC ; 

(c) turbulent intensity of the vertical component of wind velocity ' 2w  normalized on the 

local wind velocity ( )u z  ; (d) Richardson number Ri  at the distance x =2.1 m from the 

source and 0.5rU = m/s. Symbols “•” and “○” denote the experimental data for the heavy and 

neutrally buoyant gas, respectively. Solid and dashed curves denote calculated data for the 

heavy and neutrally buoyant gas, respectively. 
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Figure 6 Calculated vertical profiles of the vertical turbulent momentum flux '' ''u w− at 

different distances from the source  x =0.6 m (1); x =1.2 m (2); x =2.1 m (3).
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Figure 7 Calculated variation of the parameter 
, ,
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 with 

distance x from the gas source. 
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Figure 8 Calculated temperature distribution along wind in BURRO 8 case study at t=180 s: 

(a) without heat exchange with the Earth’s surface; (b) taking into account the heat exchange 

with the surface; (c) temperature difference ( K° ) between (b) and (a) cases. 
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Figure 9 Crosswind distribution of volume concentration in BURRO 8 case study at distance 

140 m and t=180 s: (a) measurements (Koopman et al. [ 8]); ( b) calculations with 

parameterization A; (c) calculations with parameterization B; (d) calculations with 

parameterization C.

a) b) 

d) c) 
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Figure 10 Comparison of measured and simulated maximum centerline volume 

concentrations along wind in BURRO 8 case study..  
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Figure 11 Spatial distribution of the heat exchange coefficients in the BURRO 8 experiment 

at the t=100 s; (a) heat exchange coefficient of the free convection 2λ ; (b) heat exchange 

coefficient of the forced convection 1λ . The scale λ for both coefficient is the same. 

a) 

b) 
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Figure 12 Dependence of the non-dimensional heat flux ( ) ( ) ( )/ 0q t q t q=ɶ  through the Earth 

surface on the non-dimensional time ( ) ( )( )( )2
2 0 / 0,s s gt tq c T t Tρ χ= −ɶ for different 

2 1/λ λ λ=ɶ . Here ( )q t is heat flux through the surface, t - time, sρ , sc , χ  - density, specific 

heat capacity and heat conductivity of soil, respectively, ( )0,T t - temperature of the Earth 

surface, gT is constant cold gas temperature, heat exchange coefficient 1 2λ λ λ= + , where 1λ  

and 2λ  correspond to parameterization B. Analytical solution (35) is the case of constgT = , 

1 constλ = , 2 0λ = . 

 


