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Abstract 

In previous work (Kovalets et al., 2004) the authors have developed data assimilation (DA) 

procedures and implemented them in the frames of a diagnostic meteorological pre-processor 

(MPP) to enable simultaneous use of meteorological measurements with Numerical Weather 

Prediction (NWP) data. The DA techniques were directly validated showing a clear 

improvement of the MPP output quality in comparison with meteorological measurement 

data. In the current paper it is demonstrated that the application of DA procedures in the MPP, 

to combine meteorological measurements with NWP data, has a noticeable positive effect on 

the performance of an atmospheric dispersion model (ADM) driven by the MPP output. This 

result is particularly important for emergency response systems used for accidental releases of 

pollutants, because it provides the possibility to combine meteorological measurements with 

NWP data in order to achieve more reliable dispersion predictions. This is also an indirect 

way to validate the DA procedures applied in the MPP. The above goal is achieved by 

applying the Lagrangian ADM DIPCOT driven by meteorological data calculated by the MPP 

code both with and without the use of DA procedures to simulate the first European Tracer 

Experiment (ETEX I). The performance of the ADM in each case was evaluated by 

comparing the predicted and the experimental concentrations with the use of statistical indices 

and concentration plots. The comparison of resulting concentrations using the different sets of 

meteorological data showed that the activation of DA in the MPP code clearly improves the 

performance of dispersion calculations in terms of plume shape and dimensions, location of 

maximum concentrations, statistical indices and time variation of concentration at the 

detectors locations. 
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1. INTRODUCTION 

Atmospheric Dispersion Models (ADMs) are widely used for the assessment of air quality or 

for the prediction of pollutants dispersion following accidental releases. It is well known that 

the performance of these models depends crucially on the meteorological driving data. The 

latter are obtained from prognostic meteorological models and/or from meteorological 

stations, after they have been processed by Meteorological Pre-Processors (MPPs) or 

diagnostic wind flow models (e.g., Seaman, 2000). This processing is necessary to calculate 

eventually missing variables and to adapt the original data to the computational grid of the 

ADM (e.g., to assure mass consistency of the wind field on the ADM grid). 

 

The Numerical Weather Prediction (NWP) models require significant computational 

resources (time and space) and it is not practical to run them on request each time a dispersion 

calculation needs to be performed. This is especially true for emergency response systems 

(ERSs) like RODOS (the Real-time On-line DecisiOn Support system for nuclear emergency 

management in Europe; (Raskob and Ehrhardt, 1999)) that require very fast predictions (less 

then ten minutes) of pollutant dispersion.  Therefore ERSs rely on NWP model output 

produced regularly on specific time intervals (e.g., new prognostic data become available 

every six hours) and possibly on meteorological measurements made in the area of interest 

during the time interval in question.  

 

The issue of using simultaneously both types of data (i.e., from NWP model and from 

measurement stations) in the same MPP has been addressed by the authors (Kovalets et al., 



2004). This was done to enable exploiting all the meteorological information available at a 

certain time, and to avoid the differences between ADMs results produced with the use of 

only NWP models forecasts or locally measured meteorological data.  The problem has been 

tackled by developing and introducing 3-Dimensional Data Assimilation (3DDA) procedures 

in the MPP. For the assimilation of scalar variables (surface temperature, cloud cover, net 

radiation, precipitation) the objective analysis procedure known as “iterations to optimal 

solution” (IOS - Daley, 1991) has been adopted, while for the wind velocity, either the IOS or 

a multivariate optimal interpolation was used (Kovalets et al., 2004).   

 

4-Dimensional Data Assimilation (4DDA) is already used in the NWP codes that provide the 

original data for the ADMs.  However, as it was discussed in Kovalets et al. (2005), if there 

are additional measured meteorological data then it is necessary to use DA procedures inside 

the MPPs too, otherwise the above information will be lost.  This is particularly important in 

the MPPs that are incorporated into emergency response systems which require the most 

updated information. Moreover, the scales of the atmospheric movements resolved by the 

NWP model and the MPP are significantly different because the grid scale of the MPP is 

usually finer than that of the NWP model. Hence, the small-scale movements present in the 

measurements that are treated as ‘‘noise’’ when used in the NWP model are to be resolved by 

the MPP. Thus, even if some particular meteorological observations were already used for the 

calculation of the NWP forecast, they should be used again if these forecasts are being pre-

processed on the finer grid of the MPP. 

 

The authors validated the developed methods by comparing the MPP output against the 

meteorological measurements performed during the European Tracer Experiments (Kovalets 

et al., 2004). The comparisons showed that the DA procedures improved the finally calculated 



wind velocity field in terms of better agreement with the experimental data. However, it is 

important — especially in the frames of emergency response systems — to examine if the 

adoption of DA procedures in the MPPs improves also the atmospheric dispersion model 

calculations driven by the MPPs output.  Other authors (e.g. Seaman, 2000, Hurley et al., 

2003, Luhar and Hurley, 2004, Deng et al., 2004) have presented similar studies, where data 

assimilation was introduced in prognostic meteorological codes, which directly provided data 

to the ADM.  

 

Therefore the aim of this work is to investigate whether the performance of an ADM is 

improved when it is driven by the output of an MPP that applies meteorological DA to merge 

NWP data with meteorological measurements in comparison to the case when the MPP does 

not use DA.  This is achieved by running an ADM code for a real case driven by data 

produced by an MPP with and without DA procedures. In this context, a modified version of 

the Lagrangian particle dispersion model DIPCOT (Davakis et al. 2000, 2003 2005) was 

applied to simulate the ETEX-I (Grazianni et al., 1998). The ETEX-I has been selected 

because of the availability of forecast data from the NWP model of the European Medium-

Range Weather Forecast Centre (ECMWF), meteorological measurements and of 

concentration measurements.  Three applications of the DIPCOT model were performed, 

using different meteorological data sets. In the first application we used the MPP output 

obtained by interpolating only the prognostic meteorological fields to the ADM grid. In the 

second application, the MPP output was obtained interpolating both NWP and measurement 

data on the ADM grid without applying DA, while in the third application we used the MPP 

output obtained by applying DA techniques to combine the meteorological measurements and 

the prognostic fields from the ECMWF. In all three applications a divergence minimising 

procedure was applied to the wind velocity output of the MPP to assure mass conservation.  



The ADM results for the abovementioned cases were statistically and qualitatively compared 

with the observations and between themselves. The analysis of the results showed that the 

performance of DIPCOT was acceptable in all cases; however, the activation of DA to merge 

NWP data with meteorological measurements clearly improved the results of dispersion.  This 

result validates also indirectly the use of DA procedures in the MPP code.  It is also very 

important regarding emergency response systems used for accidental releases of pollutants, 

which require updated input information and should provide reliable dispersion predictions. 

  

2. MODEL DESCRIPTION 

2.1 The MPP code 

The MPP used in this work is a diagnostic meteorological model (FILMAKER - 

Andronopoulos et al., 2005) that produces gridded data sets of variables such as wind 

velocity, temperature, mixing layer height, atmospheric stability, etc., based on 

meteorological prognostic data and on measurements. The output of the MPP is used to drive 

atmospheric dispersion calculations. The horizontal computational grid of the MPP is 

Cartesian while the vertical is terrain-following, both non-equidistant. The meteorological 

variables for which prognostic data or observations exist are calculated on the computational 

grid by spatial 1/r
2
 interpolation in the horizontal direction from the NWP model grid or from 

the observation points. For the variables without available observations (sensible heat flux 

and other), semi-empirical relations are used (Hanna and Chang, 1993, Zannetti, 1990, IAEA, 

1980, Seibert et al., 1997, Desiato and Palmieri, 1988).  In the vertical direction logarithmic, 

power-law, linear or exponential functions are used for interpolation, depending on the 

variable (wind velocity, temperature, pressure, humidity). 

 



The DA procedures that were developed and incorporated in the above MPP have been based 

on techniques developed earlier for the needs of weather prediction models.  These DA 

methods have been modified taking into account that the grid of the MPP is usually finer than 

the NWP models, and it should resolve the micro to meso-scale features of the wind flow.  

After having calculated the “first guess” meteorological variables fields by 1/r
2
 interpolation 

on the MPP grid from the NWP grid, assimilation of the scalar variables measurements is 

performed, followed by assimilation of the wind velocity measurements. For the scalar 

variables (surface temperature, cloud cover, net radiation, precipitation) the 3DDA procedures 

implemented in the MPP were based on the objective analysis procedure known as “iterations 

to optimal solution” (IOS - Daley, 1991). Assimilation of the wind velocity observations can 

be performed by two alternative methods: the IOS or a multivariate optimal interpolation (OI) 

algorithm.  The latter has been used in this study. Finally, the rest of the meteorological 

variables (for which routine measurements are not usually available, such as mixing layer 

height, sensible heat flux, stability category, friction velocity, Monin-Obukhov length) are 

affected indirectly by the DA procedures, through their dependence on the wind velocity and 

net radiation. A detailed description of assimilation procedures used in the MPP code is given 

by Kovalets et al. (2004). 

 

2.2 The ADM code 

The ADM used in this study is a modified version of the Lagrangian particle dispersion model 

DIPCOT (DisPersion Over Complex Terrain); DIPCOT is a 3D air pollution model, which 

simulates atmospheric dispersion estimating particle trajectories based on Langevin equation. 

The particles are advected at each time step using   
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where xi is the position of the particle in the i
th

 direction, n is the time step, iu is the mean 

wind component in the i
th

 direction at the n
th

 step, provided by an MPP code, iu′  represents the 

turbulent velocity fluctuations and tiu′ the velocity the low frequency horizontal meandering 

and ∆t the time step. Assuming i) that the velocity and the position of a particle evolve as a 

Markov process and ii) mutual independence of the three velocity components, iu′  is 

estimated using the one-dimensional Langevin equation. 
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where dt is the time increment, αi is the acceleration – drift term in the three directions (i =x, 

y, z), ε(z) is the ensemble-average rate of dissipation of turbulent kinetic energy and dWi are 

one-dimensional increments of a Wiener process – a Gaussian random forcing with zero mean 

and variance dt.  The dissipation rate ε is computed based on the assumption that it is a height-

dependent function (Rodean, 1994). The constant Co is a universal constant, associated with the 

Lagrangian structure function (Rodean, 1991, Shuming, 1997). There is a considerable 

uncertainty about its value. Different investigators indicated different values ranging between 

1 and 10. In this work we set the value of Co equal to 3. This value was suggested as a mean 

by Shuming (1997) and it gave best fit between several values that were examined using our 

laboratory data (Davakis et al., 2005). The deterministic acceleration term αi is derived using 

the “well mixed condition”, proposed by Thomson (1987).  

 

The DIPCOT model has been modified for this application in order to account for the low 

frequency horizontal meandering. The perturbation tiu′  in equation (1) is taken from a formula 

exactly analogous to Langevin equation, but substituting the meander statistics. Maryon 

(1997) has introduced this methodology, which was applied by Ryall and Maryon (1998) for 

the ETEX data set. The velocity variances that this parameterisation generates are similar in 



magnitude to the turbulent velocity variances. The range of horizontal motions lying between 

the scales resolved by the numerical model (say 2Tf , where Tf is the interval between the 

wind fields) and the scales parameterised through the turbulent diffusion constitute the 

meander range. Meander variances and timescales were estimated from monthly spectra 

selected from the Meteorological Research Unit at Cardington, England (Maryon, 1997).  

 

The trajectories of the released particles are computed using the above-mentioned equations. 

The pollutant concentrations are calculated by considering the number and the masses of 

particles present at a certain time in predefined grid cells that cover the area of interest 

(Davakis et al., 2003).  

 

3. THE EXPERIMENTAL DATA SET 

 

The European Tracer Experiment (ETEX - Grazianni et al., 1998) was performed in October 

1994 and involved the release of a passive, non-reactive and non-depositing gas (perfluro-

methyl-cyclo-hexane - PMCH) from a source located in western France and the subsequent 

dispersion over North Europe.  The gas release started at 16:00 UTC on 23 October 1995 

approximately 35Κm west of Rennes, at Monterfil, in Brittany, France, 90m above sea level 

at a constant rate of 7.95 g s
-1

. The release duration was 12 hours. For a time period of 72 

hours after the release a ground net of 168 sites in 17 European countries east of the release 

site performed concentration measurements and produced 3hours-averages. Besides the tracer 

concentrations measurements, the experimental database contains ground and upper air 

meteorological observations collected from the start time of the tracer release and three days 

ahead, as well as prognostic meteorological fields from the ECMWF (Gryning et al., 1998, 



Straume and Nodop, 1997).  Therefore it is a suitable case for the purposes of the current 

study.  

 

The measurements performed during the experiment covered a domain of almost 1500 x 2000 

Km
2
. This is much more extended than the computational domain of the MPP used in this 

work, which is designed for calculations on the local to meso-scales. So the calculations 

performed in this work covered a domain of dimensions approximately 1000 x 700 Km
2
 

around the point of tracer release in the ETEX (Monterfil, see Fig. 1). The computational 

domain was discretised by 5 x 5Km
2
 horizontal grid and the models were applied for 33 hours 

after the release start. From the 168 concentration receptors 66 fall into the selected domain 

following the suggestions of Dubois et al., 2005 (see Figure 2).  

 

From the ETEX-I meteorological database (Straume and Nodop, 1997) 120 observations 

stations were used. Specifically data from 47 ground-based synoptic weather stations located 

near the source (over France), along with surface observations from other 66 similar stations 

over Europe, presented in Figure 1 were used. The last ones contributed in better estimates of 

net radiation and stability category, because these stations contained, in addition to 

measurements of surface wind velocity, temperature and pressure, measurements of cloud 

cover, not available at the other ground stations. Vertical wind and temperature profiles were 

also included through the use of seven sodar stations. The prognostic, non-analysed, ECMWF 

meteorological data have been processed in this work by the MPP as the meteorological 

model forecast (NWP data). These data are available at the surface and at four upper levels for 

the day of the tracer release plus the next three days at the grid points shown in Figure 1. At 

the surface, pressure, total cloud cover, 10-metre wind (u, v) and 2-metres temperature are 



given. At the upper levels (1000, 850, 700, 500 hPa), geopotential, temperature, wind speed 

(u, v, w) and humidity are given. 

 

4. MODEL APPLICATION  

Three applications of the MPP code were performed based on different input data sets and 

computational methods. In the first case only the NWP data were used (from now on referred 

to as “NWP case”). In the second case the NWP data and the measured variables from the 

meteorological stations were used simultaneously in an equal way, without using DA (from 

now on called “AM case”). The third application, referred to as “DA case”, was based again 

on both data sets but this time data assimilation procedures were switched on. In the latter 

case, the observed meteorological data from all the measurement stations was used to improve 

the first-guess fields through the data assimilation procedure.  

 

The DIPCOT model performed dispersion calculations for the three meteorological data sets 

produced by the MPP in the above cases. Regarding the model particles release rate, a 

sensitivity study using 300 and 4000 particles per hour gave almost identical results. In the 

rest of the paper the presented results were obtained with the former release rate. The ADM 

was applied for 33 hours after the release start.  For the evaluation of the model performance 

the model predictions were compared with the observations from 66 receptors that fall in the 

selected domain of the ETEX-I. For this purpose, the calculated gridded concentrations were 

linearly interpolated to the locations of the concentration detectors. The predicted 

concentrations were compared with concentrations from the so-called “Global analysis” data 

set (Mosca et al., 1998).  This means that the experimental data set consists of all the zero 

values six hours before the cloud arrival and six hours after the cloud departure at any 

location as well as all the zeros between non zero values. The ETEX experimental data set 



contains a significant amount of zero measured values (34%), which influence the statistics. 

For these reasons, in all the indices and graphs involving the logarithm of the predicted and 

observed concentration values, the zeros have been set equal to 0.01 ngr/m
3
,
 
which is the 

sensitivity limit of the receptors (Mosca et al., 1998). 

 

5. EVALUATION PROCEDURE 

In this section the methods used for the evaluation of the ADM performance under the three 

input data sets are listed. 

 

The ADM predictions are compared with the experimental values using well-known statistical 

indices (e.g. Hanna, 1993, Mosca et al., 1998) as: the Fractional Bias (FB), the Geometric 

Mean bias (MG), the Normalized Mean Square Error (NMSE) and the Geometric mean 

Variance (VG). The FB and MG are measures of the deviations between model predictions 

and observations.  Since the FB is calculated from differences while the MG from ratios 

between Cp and Co (Co and Cp being the observed and predicted concentration values 

respectively), FB gives more weight to large values of concentrations, while MG gives equal 

weight to all pairs. A perfect model would have FB equal to zero and MG equal to one.  

Values of FB less than zero and MG less than unit mean that the model over-predicts the 

observations. The statistical measures of NMSE and VG give information on the spread of the 

deviations values (not on the over- or under-prediction) and thus they are always positive.  

The closer the NMSE value to zero is the better is the model performance.  For VG, a perfect 

model would have a value of unit.  Differences on peak values between the predicted and the 

observed concentrations have a higher influence on the value of NMSE, while VG assigns the 

same weight to all pairs of values with the same ratio.  All the above indices were estimated 

by the MEteorological and DIspersion STATistics code (Deligiannis et. al., 1997). The 95% 



confidence interval limits for FB and MG were also estimated, based on the Bootstrap re-

sampling method (Hanna, 1989). It consists in re-sampling for a number of times (1000 in this 

case) the set of pairs, with possible repetitions of pairs, and each time re-estimate the 

statistical indices. From the distribution of these values, the values corresponding to 2.5% and 

97.5% cumulative probability are taken as the limits of the confidence interval. In a 

“statistically correct” model the 95% confidence limits for FB and VG should include zero 

and unit respectively. The values of FB with its 95% confidence limits are plotted against the 

related NMSE values and the MG values against the VG.  

 

Another quantitative index of ADM performance with the three meteorological data sets is the 

“factor-of-x” (FACTx), which is the percentage of (Cp,Co) pairs for which xCCx op ≤≤1 .  

Obviously the larger this factor is, the better is the agreement between model predictions and 

measurements.  Usual values of x in model evaluation studies are 2, 5 and 10. 

 

In order to examine any model bias over the concentration distribution the Quantile–Quantile 

(Q-Q) plot has been drawn. All predicted concentrations were grouped and then sorted 

according to magnitude, and so were also the observed concentrations. The sorted predicted 

concentrations from the three meteorological data sets (NWP, AM and DA) have been plotted 

against the sorted observed values in logarithmic scale. There is no time or position 

correspondence between the concentrations of the two-sorted groups, and the ranked pairs of 

concentrations that are plotted do not necessarily correspond to the same events.  

 

As it was mention before, the Global Analysis set of the ETEX contains a great number of 

zero concentrations. In particular almost 37% of the experimental concentrations used in this 

study were zero. Thus, for a model that would not estimate any concentrations an evaluation 



procedure based only on the above-mentioned statistical indices would produce an incorrect 

view of its performance. For this reason the percentage of the non-zero observed 

concentrations (%nz) that the ADM predicts in each case is estimated (there are 150 non-zero 

measured concentrations in all the receptors for the selected computational domain and time). 

 

The model performance is also evaluated qualitatively using plots where contours of the 

experimental ground level concentrations are overlaid on the predicted ones at specific times 

(12, 24 and 33 hours after the release start). These plots show the time and space evolution of 

the predicted plume in relation to the spread of the real plume giving a qualitatively view of 

the effect that the different meteorological data set have on dispersion calculations.  Finally 

time series of the predicted against the measured concentrations are plotted at several stations 

placed along the real plume centreline. This shows how well the ADM predicts in each case 

the plume arrival and departure times, as well as the peak concentrations. 

 

6. RESULTS AND DISCUSSION 

The concentration contour plots (Figures 3 to 5) give a view of the overall effects that the 

different meteorological data sets used in this study had on the ADM calculations. During the 

first 12 hours after the release start there are some differences in the plume centreline 

direction, downwind extent and maximum concentration values. When meteorological 

observations are taken into account in addition to the NWP data, the plume centreline is 

slightly shifted towards the north and also the plume east front is extended towards east-

northeast.  This behaviour is further enhanced when the DA procedure is activated (see Figure 

3c in comparison to 3b and 3a). At the same time under the influence of DA the north-west 

front of the plume is shifted further to the west. Thus the wind field stretches the cloud in 

horizontal direction in the case of DA. That stretching is better revealed on the Figures 4, 5 in 



the cases of both: DA and measurements. By looking at the contour values at the Fig. 3 it can 

be noticed that the plume calculated using the NWP data only underestimates the maximum 

concentration observed experimentally, while the plume predicted in the AM and DA cases 

overpredicts the observed maximum values.  However the above differences are rather small. 

 

As the plume departs from the source, the effects of including the meteorological 

measurements in the calculations become more obvious. At 24 hours after the release start 

(Figures 4a-c) the south-west- part of the plume in the DA case is closer to the observed one 

than the other two, concerning both the location of the main concentration maximum over the 

north of France and the direction of the plume centreline first to the east and then to north-

east. In contrast, the NWP case predicted plume has a direction north to south, with a 

concentration maximum over the Netherlands. From the contour values it is concluded that 

the calculated plumes underestimate the maximum observed concentrations in all cases, 

however this underestimation is smaller in the DA case. 

 

As it is seen from the Fig. 4 the most essential influence of the DA algorithms is in the west-

south part of the cloud, which is closer to the source. This is possibly due to the higher density 

of the meteorological measurements in that part of the domain. The quality of the wind field 

closer to the source can be especially important for the quality of the subsequent dispersion 

calculations because initially the concentration gradients in the cloud are large and small 

variations in wind velocity close to the source can lead to large concentration deviations even 

far from the source.  

 

At 33 hours after the release start (Figures 5a-c) the effects of the meteorological DA 

procedures are also noticeable, resulting in a calculated plume for the DA case that has better 



overlap with the observed one than the other two, especially in the location of the area of 

maximum concentration, that was advected from the west-south corner of the domain (Fig. 4).  

The values of the contour lines indicate that in all cases the calculated plumes underestimate 

the maximum observed concentration values.  The underestimation is smallest when only the 

NWP data are used. Nevertheless the differences in maximum concentrations values between 

the calculated plumes are very small. 

 

From the above it is apparent that when meteorological observations in addition to the NWP 

data are taken into account by the MPP the resulting data set improves the predictions of the 

ADM regarding the plume direction and spread.  The effect of DA becomes more pronounced 

at greater distances from the tracer release location.  Furthermore, the activation of the DA 

procedures in the MPP has an additional beneficial effect on the performance of the ADM, 

resulting in a plume that overlaps better with the observed one and also agrees more in the 

location and magnitude of maximum concentration.  Even though the meteorological stations 

are more dense close to the gas source (see Figure 1) and the corrections in the meteorological 

fields produced through the DA of the meteorological measurements are relatively small – as 

can be concluded by the small differences between the predicted plumes at early stages 

(Figure 3a-c) – the effects of the above corrections on the ADM predictions are significant at 

later stages of the dispersion (Figure 4 and 5). 

 

The first quantified measure that is examined for the overlap between predicted and observed 

plumes is the percentage of the non-zero observed values (%nz) that the ADM predicts. This 

index takes the values of 66.67%, 62 % and 59.33 % respectively for DA, AM and NWP 

cases (that in absolute numbers stands for 100, 93 and 89 predicted non-zero concentrations 



over a total of 150 values).  This demonstrates that, when meteorological DA is used, the 

predictions of both the plume direction and the plume spread are improved. 

 

The FACTx (FACT2, FACT5 and FACT10) indices are presented for the DIPCOT predictions 

in Figure 6, using the 3 meteorological data sets that were produced by the MPP. It can be 

seen that when the meteorological observations are taken into account (AM, DA cases) in 

addition to the NWP data (NWP case), the indices increase, meaning a better agreement of the 

ADM predictions with the observations. The maximum values for all factors are achieved 

when the DA procedures are activated in the MPP (DA case). 

 

In figure 8, the NMSE of the ADM predictions for the three cases is plotted against the FB. It 

is noted that the performance of the ADM is best when it is driven by the meteorological data 

set produced with the DA procedures activated in the MPP. The DA case presents an FB 

value close to zero (which is included in its 95% confidence interval) with the smallest NMSE 

value.  The FB values of the ADM predictions in the other two cases are larger and the zero 

value is not included in their 95% confidence intervals, meaning that they are significantly 

different than zero at the 95% confidence level. It is reminded that the FB by definition gives 

more weight to the large concentration values since it is constituted by the differences 

between predicted and observed values. 

 

On the other hand the Geometric Mean Bias (MG) is constituted by the ratios between 

predicted and observed concentration values and it therefore attributes equal weight to all data 

pairs.  The MG of the ADM predictions is plotted against the corresponding Geometric Mean 

Variance (VG) values in Figure 8 for the three cases of meteorological data sets produced by 

the MPP. The MG of the ADM predictions is closest to unit for the case of the meteorological 



data calculated with activated the DA procedures. However the MGs of all cases include the 

value of unit in their 95% confidence intervals, meaning that they do not differ significantly 

than unit at the 95% confidence level. Nevertheless the MG 95% confidence interval for the 

DA case is the smallest of the three cases.  The smallest value of VG resulted in the NWP case 

(meaning the smallest spread of values), however the differences between the VG values are 

rather small between the three cases.  Therefore and as long as the MG values are concerned 

there is no clear distinction of the ADM performance when using the three different 

meteorological data sets. 

 

The conclusion from the analysis of the statistical indices is that when the meteorological 

observations are used together with the NWP inside the MPP (case AM), the resulting data set 

improves the performance of the ADM in comparison to the case when only the NWP data 

are used (case NWP). The FACT2, FACT5 and FACT10 are increased and the MG value is 

closer to unit. The FB is not affected and is different than zero at the 95% confidence level, 

although the NMSE is reduced.  When in addition the DA procedures are activated inside the 

MPP (case DA), the ADM performance is further improved as indicated by the increase of 

FACTx’s.  The FB value goes very close to zero and the NMSE is further reduced.  The MG is 

not drastically affected but still is even closer to unit and its 95% confidence interval is 

reduced.  Therefore the DA procedures in the MPP have a more pronounced effect on the 

larger concentration values predicted by the ADM.  This is in agreement with the conclusions 

drawn from the concentration contour plots, where it was observed that when the ADM was 

driven by the DA data set it gave a better prediction of the plume maximum concentration 

areas. 

 



The Q-Q plot presented in Figure 9 indicates that there is a bias in the DIPCOT results to 

under-predict the experimental concentration distribution for both NWP and AM cases. This 

tendency is greater in the NWP case. This is in agreement with Figure 7, where the FB values 

for the cases NWP and AM are greater than zero and also different than zero at the 95% 

confidence level. When the ADM uses the DA data set then its predictions are improved in 

comparison to the AM case at the higher concentrations, verifying also the conclusions of the 

statistical analysis. 

 

The effects from using the different meteorological data sets in the ADM calculations are also 

shown in Figure 10, where the calculated and experimental concentrations are plotted against 

time from the release start at the locations of six sensors along the ETEX plume path.  The 

locations of the sensors can be seen in Figure 2.  The sensors in Figure 10 are listed with their 

distance from the release location, with sensor 40 being the closest to the source and sensor 

15 the farthest.  It can be seen that the activation of DA procedures in the MPP decreases the 

discrepancies between the ADM predictions and the experimental data at stations 40, 46, 5 

and 15 (Figure 9 a-d) which are located near the predicted plume centreline. For the sake of 

completeness, in Figure 9 two other stations (12 and 39) are included, which lie at the edge of 

the calculated plume, where the ADM predictions are better when the DA procedures are not 

activated in the MPP.  

 

The above analysis demonstrates the degree to which the predictions of an ADM are 

improved – in terms of better agreement with observations – when 3DDA procedures are used 

in the meteorological pre-processor that provides the driving meteorological information. This 

is also an indirect confirmation of the more accurate calculation of the meteorological fields 

calculated by the MPP when DA is used to combine measurements with NWP data. 



 

7. SUMMARY AND CONCLUSIONS 

In previous work (Kovalets et al., 2004) the authors have developed and incorporated in a 

meteorological pre-processor (MPP) 3-dimensional Data Assimilation (DA) procedures in 

order to exploit simultaneously and in an optimal way both the Numerical Weather Prediction 

(NWP) data and the meteorological measurements.  In the above-mentioned study the DA 

procedures have been directly evaluated, showing a clear improvement of the MPP output 

quality in terms of better agreement with the meteorological measurements.  The present 

paper investigates whether and to what extent the results of an atmospheric dispersion model 

(ADM) are improved when the latter is driven by the output of the MPP produced with the 

DA techniques activated. In this respect, the MPP FILMAKER was used, along with the 

Lagrangian particle dispersion model DIPCOT to simulate the ETEX-1 for which an extended 

database exists, including NWP data, meteorological measurements and concentration 

measurements. 

 

The MPP code was run using prognostic data from the NWP model of the ECMWF and 

meteorological measurements from stations located in the computational domain. Three cases 

of MPP calculations have been performed: i) using only NWP data, ii) using both NWP data 

and meteorological measurements in an identical way, i.e., without activating DA procedures 

(i.e., in that case all available meteorological data are treated equally as measurements, as 

described in Andronopoulos, et.al., 1998), and iii) using both NWP data and meteorological 

measurements with DA procedures activated. The three output data sets were provided to the 

ADM to perform dispersion simulations, and the ADM results have been inter-compared and 

compared with the concentration measurements to evaluate the effect of the DA procedures.  

The following means have been used for the evaluation: overlaid contour plots of near-ground 



calculated and measured concentrations, statistical indices (fractional bias, geometric mean 

bias, normalised mean square error, geometric mean variance, factors of 2, 5 and 10, and 

percentage of non-zero concentrations predicted), quantile - quantile (Q-Q) concentration plot 

and finally plots of concentration time histories at stations locations.  

 

All the above comparisons have demonstrated that the combination of meteorological 

measurements with the NWP data inside the MPP results in data sets that improve the 

performance of the ADM. In particular the results of the ADM show the best agreement with 

the experimental data when the DA procedures are activated in the MPP.  This ADM 

performance improvement is due to the improvement of the quality of the driving 

meteorological fields produced by the MPP with the DA procedures activated. When the 

dispersion calculations are driven by meteorological data produced by the MPP with DA 

activated, the values of the factors of 2, 5 and 10 for concentrations increase, the value of the 

fractional bias approaches zero as does also the normalised mean square error. The 

improvement is also apparent in the better overlap between the calculated and experimental 

concentration contour plots, especially in the areas of maximum concentrations.  Moreover 

the plume spread and the calculated plume motion appears closer to the observed one.  The Q-

Q plot reveals that the DA in the MPP affects more the high concentration values calculated 

by the ADM.  This is also confirmed by the geometric mean bias that is not affected as much 

as the fractional bias by the DA, although it approaches the value of unit, including it at the 

95% confidence level.  Therefore it appears that the effect of the DA procedures is more 

pronounced for the higher concentrations, which is of greater interest in dispersion 

calculations for emergency response systems.  However, there is also improvement in the 

estimation of the smaller concentrations.  Finally, the majority of concentration time series 

showed also that when DA procedures were employed in the MPP code the performance of 



the ADM model was improved. The above constitute also an indirect evaluation of the DA 

methods themselves revealing that, when they are applied in the MPP to combine NWP data 

with existing meteorological measurements, the quality of the calculated meteorological fields 

is improved.  

The obtained conclusions are consistent with the results of (Jackson, et.al., 2006), which 

showed, that “hybrid meteorological fields, developed by merging the results of objective 

analysis and prognostic models, can improve episodic air quality model performance over 

using prognostic meteorological fields alone.” 

 

The above work is a first evaluation step that has demonstrated that the 3DDA procedures 

incorporated in MPPs have a noticeable positive effect on subsequent dispersion simulation 

calculations. Further tests must be carried out using other real case data, to investigate 

remaining issues such as the effects of the spatial scale of the problem, the effects of the 

monitoring network density, and the influence of the terrain complexity.  Also further tests 

must be carried out using data sets with more upper air meteorological measurements.  

Nevertheless the above work is a very positive sign towards the operational application of DA 

procedures in MPPs used in the frames of emergency response systems. 
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Figures Captions 

 

Figure 1: Computational domain with the tracer release location, the observation points’ 

locations from the ETEX database and the grid of the Numerical Weather Prediction model 



 

Figure 2: Concentration receptors in the computational domain 
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Figure 3a: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 12 hours after the release start for NWP meteorological data set; contour 

values: 0.01, 0.1, 1, 2, 3 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: 

UTM Zone 30 
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Figure 3b: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 12 hours after the release start for AM meteorological data set; contour values: 

0.01, 0.1, 1, 2, 3 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: UTM 

Zone 30 
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Figure 3c: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 12 hours after the release start for DA meteorological data set; contour values: 

0.01, 0.1, 1, 2, 3 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: UTM 

Zone 30 
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Figure 4a: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 24 hours after the release start for NWP meteorological data set; contour 

values: 0.01, 0.1, 0.3, 0.5, 1.5, 2 ngr/m
3
; computational domain as in Figures 1-2; axes 

coordinates: UTM Zone 30 
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Figure 4b: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 24 hours after the release start for AM meteorological data set; contour values: 

0.01, 0.1, 0.3, 0.5, 1.5, 2 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: 

UTM Zone 30 
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Figure 4c: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 24 hours after the release start for DA meteorological data set; contour values: 

0.01, 0.1, 0.3, 0.5, 1.5, 2 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: 

UTM Zone 30 
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Figure 5a: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 33 hours after the release start for NWP meteorological data set; contour 

values: 0.01, 0.1, 0.5, 1, 1.5, 2 ngr/m
3
; computational domain as in Figures 1-2; axes 

coordinates: UTM Zone 30 
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Figure 5b: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 33 hours after the release start for AM meteorological data set; contour values: 

0.01, 0.1, 0.5, 1, 1.5, 2 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: 

UTM Zone 30 
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Figure 5c: Contour plots of experimental (dashed line) and predicted (solid line) 

concentrations 33 hours after the release start for DA meteorological data set; contour values: 

0.01, 0.1, 0.5, 1, 1.5, 2 ngr/m
3
; computational domain as in Figures 1-2; axes coordinates: 

UTM Zone 30 
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Figure 6: FACT2, FACT5 and FACT10 histogram for ADM predictions calculated with 

NWP, AM, and DA meteorological data sets 
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Figure 7: Normalised Mean Square Error plotted versus Fractional Bias for ADM predictions 

calculated with NWP, AM, and DA meteorological data sets 
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Figure 8: Geometric mean Variance plotted versus Geometric Mean bias for ADM predictions 

calculated with NWP, AM, and DA meteorological data sets 
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Figure 9: Quantile–Quantile plot of the predicted vs. observed concentrations for NWP, AM, 

and DA meteorological data sets.  
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Concentration Time Series (Station 46)
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Concentration Time Series (Station 5)
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Figure 10: Concentration time histories at 6 observation points (beginning) 
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Figure 10: Concentration time histories at 6 observation points  

 

 

 

 


