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Abstract. The real-time applicability of the ADREA-I prognostic mesoscale meteorological model was enhanced by 

applying the preconditioned BiCGSTAB method for the numerical solution of the pressure equation in combination 

with increasing the magnitude of the time steps up to the values allowed by the Courant number. The ILU, MILU 

ILUT and ILUM preconditioning methods with different ordering strategies were used. The implementation was 

developed for arbitrarily complex geometries. The application of MILU(1) preconditioning and of ILUT 

preconditioning with red-black ordering of the unknowns (RB+ILUT) has resulted in up to 6 times shorter overall 

computational time in comparison to the previously implemented line-relaxation (LR) method. The feasibility of 

increasing the time steps has been proved by comparing the results of the 24 h ADREA-I forecasts with the 

observations during a real sea breeze case in Attiki, Greece: decreasing the time steps by a factor of 10 in 

comparison with the values allowed by the Courant number lead to decrease of the statistical errors indicators by 

only 1-5%.  
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1. Introduction 

Real-time Emergency Response Systems (ERSs) are widely used for assessing the consequences and for decision 

support in cases of hazardous pollutants accidental and/or deliberate releases in the atmosphere. Examples of such 

systems are the RODOS system for nuclear emergency management in Europe (Raskob and Ehrhardt, 1999), the 

Copenhagen ERS (Baklanov et al., 2006) the TEAP system (José et al., 2007) and others. The quality of the results 

of those systems clearly depends on the input meteorological data. The latter usually include gridded meteorological 

fields, calculated by a Numerical Weather Prediction (NWP) model, operated externally in the National Weather 

Services.  

For the case of calculations of local scale atmospheric dispersion in complex terrain (distances of the order 

of 10-100 km) downscaling of the NWP data is required to account for the meso- and micro- scale features of the 

flow. The downscaling procedure involves calculations on nested grids with increased spatial resolution. Since the 

positions of the nested domains depend on the site of interest the possibility of including a mesoscale NWP model as 

a part of the ERS to produce calculations on user-specified nested domains might be considered. Previously this 

approach was not used because of the significant computational resources required by a NWP model to calculate 

forecast. Nowadays this approach is used, for instance, in the Copenhagen ERS (Baklanov et al., 2006) and in the 

TEAP system (José et al., 2007). However optimization of the mesoscale NWP models is still required for their 

successful integration with ERSs.  

The ADREA-I code (Bartzis et al., 1991, 1999) has been developed in NCSR “Demokritos”. It is a three-

dimensional mesoscale prognostic meteorological model especially designed for calculations of atmospheric flows 

in complex terrain (Sotiropoulou et al., 2004, Andronopoulos et al. 2000, Vlachogiannis et al. 2000, Varvayanni et 

al., 1998, Varvayanni, et al., 1993). The ADREA-I model is based on the numerical solution of the three-

dimensional non-hydrostatic fully compressible hydrodynamic equations of the turbulent atmospheric flow. The 

model equations are discretized on a Cartesian grid with the finite volume method (Patankar, 1980). ADREA-I has 

been implemented for testing in the previous version of the RODOS system locally installed in NCSR “Demokritos” 

for prognoses of the meteorological situations in cases of complex terrain.  However, it has not been operationally 

used for real-time applications of the RODOS system. 

Governing equations of the mesoscale models involve fewer simplifications than the equations of large 

scale weather forecast models. Therefore the mesoscale models describe in more detail the physical processes in the 

atmosphere. Those processes result from non-adiabatic, non-hydrostatic and compressibility effects on the flow 

(breezes, slope flows, urban heat islands, complex topography). The terms that account for those effects in the 

hydrodynamic equations impose different restrictions on the time steps τ of the numerical integration required by 

stability when explicit finite-difference schemes are used. The most severe among these restrictions arise in the case 



of the fully compressible equations: max min( , , ) /
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where G is the computational domain, uα is the velocity component in α -th direction. The latter is much less 

restrictive than in the compressible case, since in the atmosphere the Mach number always: 1<<= scUM  (U is 

the magnitude of wind velocity).  

To avoid the restrictions on the time steps, the fully implicit finite-difference schemes can be used, which 

are unconditionally stable. However, due to nonlinearity of the operators of the hydrodynamic equations, the time 

steps are still restricted by the accuracy of the results. The problem of the “optimal” choice of the time step for the 

numerical integration of a nonlinear model remains unsolved. Therefore time steps are selected based on empirical 

experience and different physical considerations. In some works (e.g., Thomas and Browning, 2001) it has been 

claimed, that the restrictions on the time steps by the Courant number for the fully implicit schemes are usually 

sufficient to achieve an accurate representation of the mesoscale flow features. At the same time in some operational 

NWP models more severe restrictions on the time step selection appear. For instance, recommended time step in 

MM5 prognostic model is (Grell et al., 1994): ( ) ( )0.003min , min , /x y x y sh h h h cτ < ≈ . That restriction is natural 

because the numerical scheme of MM5 is explicit in horizontal directions. In the present work the possibility to 

increase the time steps of numerical integration of the mesoscale model equations in the implicit schemes up to the 

values defined by the Courant number has been also considered.  

The preconditioned Krylov subspace methods have been widely used to enhance the computational 

performance of different environmental models (e.g., Rao and Medina, 2006). The older successive  overrelaxation 

(SOR) and line relaxation (LR) methods (see e.g., Ratto et al., 1994) or direct methods (Flassak and Moussiopoulos, 

1988) are traditional for the meteorological applications. Still each of those methods has its advantages and 

difficulties. The successful application of the SOR method needs estimation of the optimal value of the relaxation 

parameter, which is not always possible. Direct methods, based on fast Fourier transform can be very efficient 

(Flassak and Moussiopoulos, 1988), though their use is limited to the uniform horizontal grids. As for the Krylov-

subspace methods, despite some successful attempts (Thomas, et al., 2003) in meteorological applications their use 

is restricted by significant grid anisotropy, which causes degradation of many preconditioning techniques (Notay, 

1999). However, as it will be shown in the present work, with increasing time steps the preconditioned Krylov 

subspace methods get definite advantage.  



Thus, the aim of the present paper was to develop an optimization method for the enhancement of ADREA-

I model in view of its possible integration within the real-time mode of operation of the RODOS system. The 

developed method combines the preconditioned BiCGSTAB technique (van der Vorst, 2003) with the strategy of 

increasing time steps up to the values defined by the Courant number.  Those methods are used for numerical 

solution of the pressure equation that arises in the ADREA/SIMPLER algorithm (Bartzis, et al., 1991). In the 

following sections the choice of the optimization method is justified and described in detail. The performance of the 

optimized version of the ADREA-I model is demonstrated by computational simulations of a real sea breeze 

formation event in Attiki, Greece in June 2005. 

 

2. Numerical approach 

2.1. Discretisation of the pressure equation. 

The current implementation of the ADREA-I model employs an implicit scheme for the solution of the fully 

compressible system of hydrodynamic equations, describing the turbulent atmospheric flow (Bartzis et al., 1991, 

1999). The equations are discretized on a staggered Cartesian grid with the finite-volume approach. The iterative 

ADREA/SIMPLER algorithm (Bartzis et al., 1991) is used to calculate the pressure and velocity fields at each time 

level. This algorithm leads to an iteration cycle in which the equation for the next approximation of the pressure 

field is solved using the variables from the current iteration level. The derivation of the ADREA/SIMPLER 

algorithm from the numerical approximations of the governing equations of the ADREA-I is presented in Appendix.  

As it is shown there, at each iteration step of the algorithm the following equation for pressure is to be solved (see 

also equation (23)): 
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where n is the time level, s is the iteration number, P  is the pressure, 1,s n sP P += , ρ  is the density, , ,
x y z

α α α are 

positive nondimensional coefficients depending on velocities, ,
x x

Λ Λ are operators approximating corresponding 

spatial derivatives by the forward and backward differences (see Appendix), s s sPξ ρ= ,and Φ is the right hand 

side, that depends on the variables from the previous iteration level and from the previous time step. Note that, as 

presented in Appendix, the ADREA/SIMPLER algorithm and equation (1) result from the numerical approximation 

of the governing system of model equations - continuity, momentum, internal energy and water mass fraction, which 

originally does not include the pressure equation. The boundary conditions (BC) for equation (1), are derived from 

the BC for density and velocities to assure mass and momentum conservation in boundary cells (see Appendix). For 



instance, if 1i =  is the plane nearest to the inflow boundary, where Dirichlet (constant value) BC are imposed for 

velocity components, temperature and water substance mass fraction, then, the pressure equation will be:  

 1 1 1 1 1
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Analogous BC appear at the other boundary planes and corners. In BC (2) the term in the square brackets is 

zero at the outflow boundary planes where the Neumann BC are imposed ( / 0ϕ∂ ∂ =n , ϕ - variable, n normal 

vector to the boundary).  

The problem (1)-(2) leads to a matrix equation. The structure of the matrix depends on the ordering of the 

unknowns. The natural ordering is most frequently used. In the case of rectangular domains it is defined by the 

relationship: 

 ( )0( 1) ( 1) , ,x z zl N N j N i k ORD i j k= − + − + = . (3) 

Here , ,j i k  – are the indices in , ,y x z directions correspondingly, ,
x z

N N  - are the sizes (number of cells) of the 

domain in x  and z  directions. The numbering (3) corresponds to natural ordering with the JIK order of changing 

indices (i.e. index K changing first, index J - last). Then the equation (1) leads to the following system of the 

algebraic equations in interior domain: 
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Here the notation of (Patankar, 1980) is used, in which coefficients ( )AU l , ( )AD l , ( )AW l , ( )AE l , ( )AN l , ( )AS l  

link the given node l  with its upper, down, west, east, north and south neighbours correspondingly. Thus, the matrix 

0
A is seven diagonal with AU, AE, AN representing its upper part and AD, AW, AS – its lower part. The following 

conditions hold in the domain interior:  
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( ) ( )

( ) ( )
z
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AU l AD l

AE l AW l N

AN l AS l N N

= +

= +

= +

 (5) 

which follow from the conservative form of the equations (1)-(2) and imply, that the matrix 
0
A  is symmetric. 

However, asymmetry can be introduced by the boundary conditions. For instance, the following hold near the 

boundaries: 
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0
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0
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− ≠
 (6) 



when the term in square brackets of equation (2) is equal to zero. Prior to numerical solution the equations (4) are 

normalised, so that ( ) 1,AP l l= ∀ . 

For equation (1) the following relationship holds: 

    
( )0 ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0,

AU l AD l AE l AW l AN l AS l AP l

AU l AD l AE l AW l AN l AS l l

< − + + + + + <

≤ ≤ ≤ ≤ ≤ ≤ ∀
. (7) 

Following Theorem 2.4.14 from Orthega and Rheinboldt, (1970) inequalities (7) guarantee that  the matrix 0A  is 

strongly diagonally dominant  M-matrix.  

When domains with complex geometries are discretized by Cartesian rectangular finite volumes, with 

constant number of control volumes in each direction as is the case for ADREA-I, blocked cells appear which fall 

under the ground surface. The blocked cells are excluded from the solution vector and the ordering (3) is modified in 

the following way: 

 ( ) ( )
( )

0

0

( , , )

, , , ,

1; , ,

,

nout

do j i k

l ORD i j k nout i j k blocked

nout nout i j k blocked

enddo

=

= − ∉


= + ∈

 (8) 

The matrix A  of the modified system Ax b=  has not any more 7-diagonal structure. However it is easy to see that 

renumbering does not change either the symmetry of matrix or the order of the nonzero elements in a given row. 

The M-property of the matrix is also preserved. Therefore, for the sake of simplicity the discussion below will refer 

to the unmodified ordering.  

 

2.2. Line relaxation (LR) method  

The previously implemented in ADREA-I method of “line relaxations”, resembles the method of successive over-

relaxation. It has been frequently used in diagnostic and prognostic meteorological models (e.g. Thomas et al., 

2003). If written in matrix form it can be expressed as follows: 

 ( ) 1

1 2

s s
L D U x U x b

++ + = − +  (9) 

Here matrix L is the lower triangular part of the matrix A , matrix D  is the diagonal part of A , 
1

U  is a matrix that 

includes the first upper diagonal of A : 1( , 1) ( )U l l AU l+ = . Matrix 
2

U  contains all other upper diagonals of A .  

Implementation of the iteration step (9) is easily transformed to the solution of x yN N systems of equations with 

three-diagonal matrix of the size zN .  



Since the “lines” are oriented vertically, the rate of convergence of the LR method can become high for 

anisotropic grids, when vertical links are much stronger than horizontal. Indeed, the relative value of the matrix 

coefficients is approximately:  

 
2

2

( ) ( )
~ ~ ~

( ) ( )
x xz z x z

z x xy z x
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R

AU l AU l h S h

α α
α α

=  (10) 

Here xzS  is the xz cell surface area, ,z xh h  are the vertical and horizontal mesh sizes. When / 1z xh h << , then <<1R  

and the LR method will obviously converge fast. 

However, the LR method looses its efficiency when the time integration step τ  increases. An example of 

sharp increase in computational time needed for solution of the pressure equation with increasing time step is shown 

in the Figure 2. As it is clearly seen from this figure, the time needed for solution of pressure equation is growing 

rapidly: from 0.1 s to 60 s with τ changing from 1 s to 400 s. Such rapid increase in computational time indicates 

the rise of the condition number of the system max min/κ λ λ=  with rising τ ( max min0, 0λ λ> >  are maximum and 

minimum eigenvalues of the system). For the rest of the variables (humidity, temperature, turbulent kinetic energy) 

the solution time raises much slower reaching at most 1 s. Due to such rapid increase in computational time with 

increasing τ  very small time steps are to be used when LR method is applied. For instance, in the test case 

presented below 16sτ = which is much less than the time step imposed by the Courant number. For such small time 

steps the LR method converged in about 30 iterations. This is very fast convergence for the number of active 

cells 45 10≈ ⋅ . And even in that case, as follows from the Figure 2 the pressure equation demands the majority of 

computational time in comparison with the other variables. Thus, the obvious strategy to optimise the ADREA-I 

model is to enhance the solution of the pressure equation together with increasing time steps. 

 

2.3. Preconditioned BiCGSTAB method. 

The preconditioned conjugate gradients (CG) method of numerical solution of the matrix equations is one of the 

most popular methods for the case of Symmetric Positive Definite (SPD) M-matrices (van der Vorst, 2003). For the 

case of non-symmetric PD matrices the Bi-CGSTAB method has been developed by van der Vorst (2003). It has 

been widely recognized as one of the best methods for such matrices. As it was mentioned above, asymmetry can be 

introduced by the boundary conditions, however, it is easy to see, that the matrix remains positive definite and 

preserves the M-property. Thus the BiCGSTAB method was chosen to accelerate the solution of the pressure 

equation under large time steps.  

As in the CG method, in BiCGSTAB, the residual vectors, the basis vectors and the next approximation for 

the solution vector are built recursively at each iteration step in the way that minimizes the residual in certain sense. 



One iteration step consists of several matrix-vector multiplications. Thus the number of operations in one iteration 

step is ( )O N . In each iteration step of the preconditioned BiCGSTAB algorithm the auxiliary system of equations 

with the matrix K A≈  is to be solved twice (preconditioning step). The matrix K  is called “preconditioner” and its 

choice is critical for the convergence of the BiCGSTAB method. The preconditioning step reduces the condition 

number of the system and can greatly increase convergence.  

Effective preconditioners for M-matrices can be constructed with the Incomplete LU (ILU) factorisation 

method (van der Vorst, 2003). The ILU preconditioner is defined as the approximation K LU=  of the matrix A , 

with the upper and bottom triangular matrices U  and L . Matrix L  has the unit diagonal, and in both matrices U  

and L , nonzero elements appear only in positions defined by the nonzero stencil: 

 
,

( , ) 0, ( , ) 0 , ,

K LU

l i j u i j i j Stenc

=

≠ ≠ ⇔ ∈
 (11) 

 
The choice of the nonzero stencil is critical for the quality of preconditioner. If the nonzero stencil includes arbitrary 

pairs of indices, then an exact LU factorization is obtained.  The latter requires ( )3O N  operations, thus the nonzero 

stencil should be sparse enough to be practical.  The simplest choice of sparse nonzero stencil is the coincidence 

with the nonzero stencil of the original matrix A . This choice leads to ILU(0) preconditioner (stencil of level zero).  

Adding some new nonzero entries in stencil could make ILU more exact and thus more effective. At the same time 

increasing the number of nonzero entries in the stencil increases the number of operations performed per iteration in 

the BiCGSTAB algorithm. Thus, only positions containing elements of relatively large size should be chosen.  The 

question to locate these positions was studied intensively and the concept of the “level of fill in” has been 

introduced. The latter works well for the M-matrices and is defined through the graph representation of matrix (van 

der Vorst, 2003). The nonzero stencil based on the “level of fill in”  levN  is defined as the set of such column 

numbers j in the row i , that the minimum length of the path from the node j  to the node i  in the matrix graph is 

not higher then levN . The preconditioners, in which the nonzero stencil was defined by the “level of fill in” were 

called ( )levILU N .  

With the given nonzero stencil the construction of the L  and U  factors is achieved with a version of the 

Gaussian elimination algorithm. In the present work the so-called IKJ version of the LU factorization algorithm 

(Saad, 2003) was implemented. This algorithm proceeds as follows:  



 

ik ik kk

ij ij ik kj

1. For i=2,N Do:

2.      For k=1,i-1, and if (i,k) Stenc, Do:

3.             a =a /a

4.                For j=k+1,N and if (i,j) Stenc, Do:

5.                a =a -a a

6.                EndDo

7.         En

∈

∈

dDo

8. EndDo

 (12) 

The first cycle in the algorithm (12) is cycle by rows of matrix (i.e., in vertical direction). The other 2 cycles are 

cycles by columns (i.e., in horizontal from the left to right direction). Thus, in this version of the Gaussian 

Elimination algorithm when the values in the current row are modified, they depend only on the values in the upper 

rows (previously processed). The stencil in the algorithm (12) can correspond either to the stencil of the given level 

levN , when ( )levILU N  is constructed, or to any other nonzero stencil.  

In the Modified ILU factorization ( )levMILU N (Gustaffson, 1996), when current row is processed in the 

algorithm (12) the elements of the L  and U  factors, are first calculated for the stencil of the 1levN + level. Then the 

elements in positions, not coinciding with the stencil of the levN -th level are summarized, subtracted from the main 

diagonal and then set to zero.  In this way the constructed  L  and U   factors have the following property: 

Ae LUe= , where e  is unit vector (Saad, 2003). In other words the MILU factorization is exact for unit vectors. 

The rate of convergence of ILU and MILU methods for general matrices had been studied in Axelsson and 

Lu, (1997). Convergence for matrices arising from approximations of two-dimensional elliptic problems with 

Dirichlet boundary conditions had been studied in Gustafsson (1996). The rate of convergence of ILU 

preconditioner for such problems is: ( )1.5~Noper O N  where Noper  is number of operations needed for 

convergence. For the MILU the convergence is faster: ( )1.25~Noper O N , (Gustaffson, 1996). That estimation is 

close to the “grid-independent” convergence: ~ ( )Noper O N . The MILU factorization is stable for the diagonally 

dominant M-matrices (Brand, 1996), and thus is feasible for the solution of (1). 

Contrary to the above “level of fill in” concept, in the ILUT preconditioning strategy (Saad, 2003), the 

elements calculated during the step 5 of the algorithm (12), are dropped if  their absolute values are less than a given 

fraction of the norm of the currently processed row: ij i iia a aω ω≤ =  . Here ω is threshold value, and the last 

equality is due to (7). Thus the nonzero stencil is defined in the ILUT approach dynamically, and the nonzero stencil 

calculated based on the “level of fill” concept (denoted by “Stenc” in the algorithm (12)) can be considered as the 

“first approximation” to the nonzero stencil of the ILUT. In the present work the ILUT approach was also combined 

with the “diagonal modification strategy”, which was described above. In the present study it had been found 



empirically that the values of 0.01ω = were nearly optimal. However the performance of ILUT was not very 

sensitive to the values of ω . In all studied cases the performance with ILUT reduced not more then by the factor of 

2 within the range of ω : 0.001 0.1ω≤ ≤ .  

The performance of the ILU preconditioned BiCGSTAB method depends also on the ordering of the 

unknowns. For the case of vertically stretched anisotropic grids the natural JIK or IJK orderings (horizontal indices 

changing first) have advantage over the KJI ordering (D’Azevedo et al., 1992).  

The red-black ordering of the unknowns (Saad, 2003) leads to the block partitioning of the system of 

equations: 

 11 12

21 22

R R

B B

A A x b

x bA A

    
=         

 (13) 

If red-black ordering is exact 
11
A = I , 

22
A = I , ( I is identity matrix). In that case red nodes are linked only to black 

nodes and vice versa. Thus the red unknowns can be eliminated, leading to the system of equations for the black 

unknowns:  

 ( ) ( )21 12 21B B B R S
S x A A x b A b b= − = − =I  (14) 

 
The matrix S   is called Schur complement matrix. There is no need to calculate and store matrix S  itself, because 

in the BiCGSTAB algorithm only matrix-vector products w = Sv are needed, which can be calculated in the 

following way (Saad, 2003):  

 
1

12

1

21

Computev A v

Computew v A v

=

= −
 (15) 

The ILU(0) preconditioner of the matrix S  can be calculated with the algorithm (12) as the bottom corner block of 

the ILU(1) factorization of the original matrix –  the so-called “induced preconditioner” ( Saad (2003)).  

The more advanced multilevel approach, close to ILUM (Saad, 2003), GILUM (Zhang, 2001) and MRILU 

(Botta and Wubs, 1999) had been implemented. It is based on the idea of the repeated approximate red-black 

ordering. In this multilevel approach the corresponding to level 1 nodes of Schur complement matrix (15) are further 

reordered to form almost independent set of nodes (which are again called “red” and the rest - “black”). The 

modified Greedy algorithm (Zhang, 2001) is used to find those almost independent sets of nodes.  If the two sets of 

nodes are not completely independent the diagonal blocks in the matrix (13) are not anymore identity matrices. 

However, when the links between the nodes in the first (“red”) set are weak the 
11
A block is strongly diagonally 

dominant matrix and can be approximated with the diagonal matrix (as it is done in the MRILU approach). Then the 

Schur complement of the second level is calculated. This recursive procedure is repeated up to the maximum 



specified level. For large CFD problems that maximum level should not be too high (Weijer et al., 2003) and in the 

present study 3 levels were used. The obtained approximate block factorization of the original matrix is then used as 

preconditioner.  

The described BiCGSTAB algorithm, together with preconditioners ( ( )
lev

ILU N , ( )
lev

MILU N , 

ILUT , ILUM ), and the different orderings (natural JIK, KJI, red-black), have been implemented in a software 

library. It uses the Illpack-Ellpack format (Saad, 2003) for the storage of sparse matrices. This format is very 

effective when working with matrices having an approximately fixed number of nonzero elements in one row. 

However, for the multilevel preconditioners this format appeared to be too much memory consuming and the more 

economical Compressed Sparse Row (CSR) format (Saad, 2003) will be used in the next developments.  

 

3. Results of calculations 

To evaluate the performance of the newly implemented methods in ADREA-I, computational simulations of a real 

case sea breeze formation event in the area of Attiki, Greece, have been performed.  The date of the event was 20 

June 2005. The computational domain is shown in Figure 1 together with the locations of the ground meteorological 

stations that provided the measurements used for comparison purposes. The x- and y-axis were taken along the west 

to east and south to north directions respectively, and the z-axis vertically upwards.  Four sets of calculations were 

performed, which are summarized in Table 1. In the cases 1, 3, 4 with a horizontal grid resolution of 4×4 km2 the 

computational domain was discretized  by 46 × 46 × 29 cells in x, y, and z directions respectively. In the case 2 with 

a finer (2 × 2 km2) horizontal grid resolution the number of grid cells in horizontal directions was increased to 92. 

Rawinsonde measurements were used to initialize the vertical profiles of wind, temperature and humidity. Initial 

vertical profiles of turbulent kinetic energy were initialized with the stationary solution of the one-dimensional 

problem, describing the vertical turbulent momentum transport in the atmosphere. The average climatic values for 

the specific season were used to initialise the sea-surface and land-surface temperatures and the soil humidity. In the 

case 3 the initial profile of the magnitude of the wind velocity was increased by the constant value 

10 3.8 /U U m sδ = = equal to the measured 10-meter wind speed. Thus, the winds in the surface-layer were increased 

by the factor of two. On the contrary, in the case 4 the initial profile of the magnitude of the wind velocity was 

reduced by the constant value 100.5 1.9 /U U m sδ = − = − , decreasing the winds in the surface-layer by the factor of 

two.  Though in the cases 3 and 4 comparisons with measurements were impossible, they allowed more 

comprehensive testing of the developed algorithms and, as it will be seen below, provided more support to the 

strategy of increasing the time steps up to the Courant number.    



In all cases runs with “small” and “large” (i.e., defined by the Courant limit) time steps were performed. In 

all cases the “small” time step was the same: 16sτ = . The “large” time steps were defined by the Courant limit: 

min /
G

h uα α
α

τ
 

≈  
 
∑ . The corresponding values of τ for the cases 1-4 are presented in Table 1 (column 4). 

The specific day was characterized by low surface wind speed 10 3.8 /U m s=  and a pronounced sea breeze 

development during the daytime had been observed. The calculations started at 00:00 h local time. The effect of the 

time step on the performance of the LR and of the different types of preconditioned BiCGSTAB methods is shown 

on Figure 2. It is obvious from Figure 2 that for small time steps 25sτ < all methods perform worse than the line 

relaxation (LR) method. This is because for small time steps line relaxation takes great advantage of the coefficients 

anisotropy in vertical direction, as it was discussed above. However, with increasing time steps the effect of ill-

conditioning becomes more pronounced and the preconditioned BiCGSTAB methods perform much faster (up to 30 

times for 400sτ = ) than the LR method. Asymptotically the fastest methods are MILU(1) with natural KJI ordering 

and ILUT with red-black ordering. The ILU(2), MILU(2) and the ILUM methods (not shown in Figure 2) performed 

several times worse than the MILU(1), requiring time for solution of pressure equation about 8 s when 100sτ = . 

Therefore they were not used in further calculations.  The degradation of the MILU(2) performance happens 

because of the increased number of the multiplications with increasing the level of fill. The poor performance of 

ILUM was possibly due to the lacks of the Greedy algorithm, which both theoretically (Saad, 2003) and practically 

cannot find the set of independent nodes of the maximum possible size.  

The total computational times needed by ADREA-I for the 24h simulation with the new methods (MILU(1) 

and RB+ILUT) using the large time steps and with the old method (LR) using the small time steps are compared in 

Table 1.  As it can be seen from Table 1 an overall level of improvement by a factor of 5-6 was achieved in the cases 

1,3,4 on the coarse grid and by a factor of 3.5-4.5 in the case 2 on the fine grid. In all cases, presented in Table 1 the 

RB+ILUT method was used with the same value of 0.01ω = . The same levels of improvement, achieved with that 

method support the above assumption, that RB+ILUT is not very sensitive to the values ofω . 

The total computational times needed by ADREA-I for the 24h simulation with the new methods (MILU(1) 

and RB+ILUT) using the large time steps and with the old method (LR) using the small time steps are compared in 

Table 1.  As it can be seen from Table 1 the levels of improvement by a factor of 5-6 were achieved in the cases 1, 3 

and 4 on the coarse grid and by a factor of 3.5-4.5 in the case 2 on the fine grid.  

In case 2 increasing the spatial resolution by a factor of 2 in comparison with case 1 lead to increase in the 

size of the solution vector by a factor of 4: 2 14N N≈ .  As it is seen from Table 1 in case 2 the total computational 

time with the MILU(1) and RB+ILUT methods increased by a factor of 7.5: 2 17.5Tcalc Tcalc≈  . Thus the number 



of operations needed to solve the pressure equation (1) per one time step increased by a factor of 

( ) ( )2 1 2 2 1 1 2 13.8 /Noper Noper Tcalc Tcalc N Nτ τ≈ ≈ ≈ . Thus, almost grid independent convergence rate is observed 

here.  This is consistent with the abovementioned theoretical results proved by Gustaffson (1996) for idealized 

problems.  

The possibility to increase the time steps was verified by comparisons of the calculations results (in the 

cases 1 and 2) with the meteorological measurements for the specific day.  The comparisons were performed against 

the data from the 8 meteorological stations, which locations are shown in Figure 1.  At all the stations wind speed, 

wind direction and temperature were measured. The comparisons of the predicted vs. measured data (wind 

velocities, wind directions, temperatures) for three stations are shown in Figures 3-4. Calculations with the small 

time steps are shown with the solid lines, while the calculations with the time steps, defined by the Courant limit are 

shown with the dashed lines. Both observed and predicted time histories of wind demonstrate pronounced sea 

breeze development. The simulated by the model wind speeds and temperatures are close enough to the measured 

values.  Figures 3-4 also demonstrate improvement of the calculations agreement with the measurements with 

increasing grid resolution. Figure 5 shows the calculated surface wind field in the domain of calculations, which also 

reveals characteristic sea breeze flow features in daytime. As it can be seen from the Figures 3-5, increasing the time 

steps in both cases – fine and coarse resolution – has negligible effect on the quality of the calculated results.  

The statistical indicators (root mean square deviations of the wind velocities and air temperatures) of the 

errors of calculations in comparison with the measurements are presented in Table 2. As it is seen from Table 2, 

under the influence of the increased time steps all statistical characteristics of error increase only by 1-5% of the 

values obtained with the small time steps.   

Table 3 presents the root mean square differences in velocity magnitude 
U

σ  and temperature 
T

σ between 

results, calculated with the small and large time steps in the runs 1-4.  As it is seen from Table 3 in all cases  

0.2 /
U

m sσ ≤ , 0.28
T

Cσ ≤ � . Both values are essentially smaller than the corresponding root mean square errors, 

presented in Table 2. Thus, from the above it can be concluded that the strategy of increasing the time steps up to the 

values restricted by the Courant number is justified by the accuracy of the obtained results.  

 

4. Conclusions 

In the present work the improvement in computational speed of the ADREA-I mesoscale prognostic meteorological 

model was considered. The way of achieving this aim was to use the preconditioned BiCGSTAB method for the 

solution of the pressure equation together with increasing the time steps up to the values restricted by the Courant 

number.  Different preconditioning strategies (ILU, MILU, ILUT, ILUM) and different kinds of orderings in 



combination with the BiCGSTAB method were implemented in the software library, especially designed for 

calculations in conjunction with CFD codes like ADREA-I.  The implemented methods were tested by performing 

computational simulations of a real sea breeze formation event in Attiki, Greece, on June 25th, 2005, and by 

comparing the calculations results with measured meteorological data for the specific day. Increasing the time steps 

was justified by the accuracy of the results achieved. Using time steps defined by the Courant limit lead to the 

increase of the root mean square errors of the wind velocity and temperature only by 1-5 % in comparison with the 

case, when calculations were done with significantly (by the factor of 5 to 10) smaller time steps.  

The previously implemented line relaxation method appeared to be inapplicable when larger time steps 

were used, since it led to very high computational times. The preconditioned BiCGSTAB method significantly 

improved the situation. The best levels of improvement were achieved for the case of MILU(1) preconditioning and 

of ILUT preconditioning combined with the red-black orderings of unknowns. The overall levels of improvement 

achieved with the preconditioned BiCGSTAB method and time steps restricted by the Courant limit in comparison 

with the old LR method and small time steps were by a factor of 5-6 in the case of the coarser (4 km) grid and by a 

factor of 3.5-4.5 in the case of the finer (2 km) grid. The overall time needed for the calculation of the 24 h forecast 

with the new methods was about 30 min in the case of the 4 km grid. This appears to be close to the requirements of 

the real-time applicability of the ADREA-I model for emergency response.  
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Appendix. Governing equations and the ADREA/SIMPLER algorithm 

Here some essential details concerning the numerical approximation of the model equations and the 

ADREA/SIMPLER algorithm are given. More details concerning the derivation of the governing equations can be 

found in Housiadas et al., (1991), and in Bartzis et al., (1999) and concerning the numerical scheme in Bartzis et al., 

(1991). The governing system of equations of the ADREA-I model consists of the equations for the moist air-liquid 

mixture mass, momentum, internal energy and water mass fraction together with the state equation for the ideal gas. 

In the tensor notation those equations are: 



 0
u

t x

α

α

∂ρ∂ρ
∂ ∂

+ =  (16) 

( )11 1 1
2 l l s s

u m

u u u q q u uP
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α
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∂ρ∂ ∂ ∂∂
ρ

∂ ∂ ρ ∂ σ ∂ ρ ∂
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 / ( , ).
v

P e qρ ξ=  (20) 

Here ( , , )x x y zα =  are the coordinates, ( , , )u u v wα = , gα , s
u α , m

K α , are the components of wind velocity , gravity 

acceleration, slip velocity, momentum eddy viscosity in thα direction ( 1,2,3α = ),  ρ is the density, ,
l

e e are the 

specific moist air internal energy and water substance internal energy, ,
w l
q q ,

v
q  are the water substance, water 

substance liquid and water substance vapour mass fractions, T  is the temperature, P is the pressure, 
p
c is the moist 

air specific heat capacity, eαβγ is the antisymmetric symbol, βω is the component of the angular velocity of the Earth 

rotation velocity vector. The governing equations are complemented with the turbulence parameterization, involving 

the transport equation for the turbulent kinetic energy, heat conduction equation in the surface soil layer, 

parameterizations of the basic physical processes such as heat exchange with Earth surface, water condensation, 

rainfall velocity, solar radiation (Bartzis et al., 1999).  

Note, that despite the equations (17)-(19) are presented in non-conservative form, the conservative form of 

those equations is used for the numerical approximation. However, using the approach of Patankar, (1980), the 

resulting approximation is equivalent to some particular approximation of the non-conservative form of equations 

(17)-(19). For the presentation of the ADREA/SIMPLER algorithm the non-conservative form is preferable and 

therefore used here.  

The equations (16)-(19) are approximated with the finite volume method on the staggered Cartesian grid. 

Thus all the scalar variables are defined on the same set of grid nodes. The grid for the u component of wind 

velocity is shifted in x direction with respect to the original scalar grid. Analogously for v and w components the 

grids are shifted in y  and z directions with respect to the scalar grid.  

In the regular cells of the computational domain (rectangular cells without solid obstacles inside) the 

equation (16) is approximated as: 



 

( ) ( )

1 1 1 1 1 1 1
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
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0s

ijk
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(21) 

where s is the iteration number, n  is the time layer, , 1s s n

def

ϕ ϕ += , , ,
x y z

Λ Λ Λ are operators, approximating the 

derivative by forward difference: ( )1 /x ijk i jk ijk xhϕ ϕ ϕ+Λ = − . The values of the scalar variable between nodes: 

1/ 2i jk
ρ ± are obtained by the first order interpolation method. The approximation for the momentum equation (17) is 

( 1β = ): 

 
1
1/ 2 1/ 2 1 1

, 1/ 2 , 1/ 2 , 1/ 2 1/ 2

1/ 2

1
s n

i jk i jk s s s

x ijk u i jk u i jk u i jk i jks

i jk

u u
P F F uδ

τ ρ

+
− − + +

− − − −
−

−
+ Λ = = −ɶ  (22) 

Here , 1/ 2u i jk
F − is numerical approximation of the right hand side of equation (17),depending on the values of the state 

vector at both s and s+1 iteration levels; ,u ijkFɶ  is part of  , 1/ 2u i jk
F − , containing variables only at s iteration level,

x
Λ is 

operator, approximating the derivative by the backward difference: ( )1 /x ijk ijk i jk xhϕ ϕ ϕ −Λ = − . The values of 

, 1/ 2
s

u i jk
δ − are equal to the diagonal elements of the matrix representing the numerical approximation of the diffusion-

convection operator: 
( ) ( ) ( )

( )
( )

, ,

1
m

l ijk

x i y j z k

u u
u K u

x x x
α α

α α α

ρ
ρ

 ∂ ∂ ∂
− ≈ Θ 

∂ ∂ ∂ 
. Here the index ( )l ijk has the same meaning 

as in (3), matrix Θ represents numerical approximation of convection-diffusion operator and vector u - 

approximation of u  component of velocity on the computational grid. The monotonic approximation of convection-

diffusion operator implies that the matrix Θ is M-matrix therefore its diagonal values (and therefore values of δ in 

equation (22)) are always positive. Approximations for 2,3β = are analogous. Substituting 1
1/ 2

s

i jk
u

+
− , 1

1/ 2
s

ij k
v

+
− , 1

1/ 2
s

ijk
w

+
−  

from those approximations together with the relationship: 1 1s s sPρ ξ+ +≈  in (21) yields: 
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, (23) 

where ( ),1 1s s

x u ijkα τδ= + , ( ),1 1s s

y v ijkα τδ= + , ( ),1 1s s

z w ijkα τδ= + are non-dimensional and positive since the values of 

δ are positive as described above. 



Consider now the boundary conditions at the inlet boundary. Let the inlet boundary coincide with the 

subset of nodes of one of the velocity components: { }1/ 2,1 ,1y zi j N k N= ≤ ≤ ≤ ≤ . At the inlet boundary constant 

values of velocity components, temperature and water substance mass fraction, together with zero pressure gradients 

normal to the boundary are assumed. Substituting those conditions to the continuity equation in the nodes of the 

nearest plane to the inlet boundary ( )1 jk will lead to the following modification of equation (23): 

 
1

1 1 1 1 1
1 1 1 1

s s n

jk jk s s s s s s

x x jk y y y jk z z z jk jk

x

P
P P P

h

ξ ρ τ
α τ α τ α

τ

+
+ + +

−
− Λ − Λ Λ − Λ Λ = Φ  (24) 

Let the outlet boundary coincide with the subset of nodes of the scalar variables: { },1 ,1x y zi N j N k N= ≤ ≤ ≤ ≤ . 

The boundary conditions at the outlet boundary are of the Neumann type: 0ϕ∂ ∂ =n , where { }, , , wu e qβϕ ρ= , 

n is normal vector to the boundary. Substituting these conditions to the numerical approximation of the continuity 

equation (16) in the nodes of the outlet boundary ( )x
N jk obtain the following modification of equation (23): 

 
1

1 1x x

x x x

s s n

N jk N jk s s s s

y y y N jk z z z N jk N jk

P
P P

ξ ρ
τ α τ α

τ

+
+ +

−
− Λ Λ − Λ Λ = Φ  (25) 

As follows from equation (25), values of pressure at the outlet boundary are not linked (during one iteration 

step) to the values of pressure in interior domain. This feature makes boundary conditions (25) in a certain sense 

similar to the constant pressure boundary condition, which is typically applied at the outlet boundaries for modeling 

of subsonic compressible flows (Wesseling, 2001, sec. 12.4, Chung, 2002, Table 13.6.1). However, in contrast to 

that more frequently used approach, in case of (25) constant pressure is applied only in one specified node of the 

outlet boundary plane. This allows preserving full mass conservation of the flow in the computational domain 

without additional corrections of the outlet velocity field which are to be applied if constant pressure were used as 

boundary condition for the whole outlet boundary plane (Eq. 9.6 from Versteeg and Malalasekera, 1995).  

Thus, the overall flow of the ADREA/SIMPLER algorithm, based on the SIMPLER algorithm of Patankar  

(1980), consists of two steps per iteration step: a) solve the equation (23) using the values from the previous iteration 

step; b) solve the equations (17)-(19) using the corrected pressure values, and update all other variables, including 

the variable sξ needed for next iteration of the algorithm.  

Note, that the derivation above was performed for the regular cells. The same kind of derivation could be 

performed also for the irregular cells. However in that case the operators ,
x x

Λ Λ and other should be treated as 

generalized operators, approximating the corresponding derivatives, which follow from the finite volume 

discretization of the original equations.  
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Figures 

Figure 1. Computational domain with topography contours, centred on the Attiki (Greece) region. Positions of 

surface meteorological stations are marked with dots. 

Figure 2. Dependence of computational time for solving the pressure equation per time step on time step magnitude, 

for the different methods: LR, ILU(0), MILU(1) with natural KJI ordering and ILUT+RB. Computational time for 

solving the temperature equation with the Gauss-Seidel method is also shown.  

Figure 3. Calculated and measured time histories of the wind velocity and wind direction for three meteorological 

stations. Symbols– measurements; 1), “______” - 4 ,
x y
h h km= = 16sτ = ; 2), “_ _ _ _” - 4 ,

x y
h h km= = 200sτ = ; 

3), “______” - 2 ,
x y
h h km= = 16sτ = ; 4), “_ _ _ _” - 2 ,

x y
h h km= = 100 .sτ =  

Figure 4. Calculated and measured time histories of the temperature for three meteorological stations. Symbols– 

measurements; 1), “______” - 4 ,
x y
h h km= = 16sτ = ; 2), “_ _ _ _” - 4 ,

x y
h h km= = 200sτ = ; 3), “______” - 

2 ,
x y
h h km= = 16sτ = ; 4), “_ _ _ _” - 2 ,

x y
h h km= = 100 .sτ =  

Figure 5. Near-ground wind field (overlaid on topography contours) at 13:00h local time calculated with: 

4 ,
x y
h h km= =  16sτ =  (left) and 4 ,

x y
h h km= =  200sτ =  (right).  



 

Computational time (minutes) of different 

methods 

Case 

No. 

Case definition Horizontal 

mesh size 

(m)  

 Time step τ (s) 

for MILU(1) and 

RB+ILUT MILU(1) RB+ILUT LR (τ =16s) 

1 20 June 2005, Attiki 4000 200 38 30 190 

2 20 June 2005, Attiki 2000 100 285 220 990 

3 Same conditions as case 1 

but with increased inlet 

wind velocities  

4000 160 45 35 191 

4 Same conditions as case 1 

but with reduced inlet 

wind velocities 

4000 250 30 28 188 

 

Table 1. Total computational times of 24 h. forecast with different numerical methods in different cases. 

Calculations were performed with Pentium-IV, 3GHz. 



 

rmsu,(m/s) rmst, C�  Case 

No. 
with 16sτ =   with large τ  with 16sτ =    with large τ  

1 1.69 1.72 2.95 3.1 

2 1.26 1.22 2.89 2.94 

 

Table 2. Statistical comparisons between calculations and measurements; rmsu – root mean square deviation of wind 

velocity; rmst - root mean square deviation of temperature; Case No. corresponds to the Table1; large values of τ  

correspond to column 4 of  Table 1. 



 

Case No. 
Uσ (m/s) Tσ , C�  

1 0.15 0.24 

2 0.09 0.11 

3 0.18 0.25 

4 0.2 0.28 

 

Table 3. Root mean square differences in prediction of the wind velocity (
U

σ ) and temperature (
T

σ ) with the 

“large” and “small” time steps. Case descriptions and corresponding time steps are given in Table 1. 
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Figure 5 

 




