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Abstract  

The problem of correcting the pollutant source emission rate and the wind velocity field inputs in a puff atmospheric 

dispersion model by data assimilation of concentration measurements has been considered. Variational approach to 

data assimilation has been used, in which the specified cost function is minimized with respect to source strength 

and/or wind field. The analyzed wind field satisfied the constraints derived from the conditions of mass conservation 

and linearized flow equations for perturbations from the first guess wind field. ‘Identical twin’ numerical 

experiments have been performed for the validation of the method. The first-guess estimation errors of source 

emission rate and wind field were set to a factor of up to 10 and up to 6 m/s respectively. The calculations results 

showed that in most studied cases an improvement of vector wind difference (VWD) error by about 0.7-1 m/s could 

be achieved. The resulting normalized mean square error (NMSE) of concentration field was also reduced 

significantly.  
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1. Introduction 

Atmospheric Dispersion Models (ADMs) are frequently used in Emergency Response Systems (ERSs) for the 

prediction of pollutants dispersion following accidental releases (e.g., in EU nuclear emergency response system 

RODOS, [ 1]). The quality of the ADMs results obviously depends both on the complexity of the ADM and on 

accuracy of the input data. In cases of nuclear emergencies the most important errors are related to the estimation of 

source emission rate and to the input meteorological data, [ 2]. Input data quality can often be improved by 

assimilation of available measurements (e.g., [ 3]). Variational approach is one of the most popular data assimilation 

methods [ 4], since it allows improving the quality of the predicted results by adjusting the input data and 

simultaneously keeping physical balance between calculated fields. 

A lot of work has been devoted to improvement of source function estimation by variational assimilation of 

the concentration measurements. In the vast majority of works the meteorological parameters had been fixed 

(excellent review for such works concerning global emission modelling can be found in [ 5] and examples of other 

works dealing with accidental release modelling are [ 6],[ 7],[ 8]). This allowed reducing data assimilation problem to 

linear regression.  

Since meteorological data can also significantly influence results of the ADMs prediction, the problem of 

improving the meteorological input data by assimilating meteorological measurements in the Meteorological Pre-

Processors (MPP) of the ERSs has been also considered in several works (e.g., [ 18], [ 20]). However, concentration 

measurements around the point of release also contain information about the local meteorological fields and 

potentially could be used for the improvement of the meteorological data through data assimilation.  

An attempt to improve the wind field information with concentration measurements was firstly performed 

in [ 21]. That work considered a very different in comparison to the present work atmospheric dispersion problem - 

modelling of the planetary ozone distribution. The problem of estimation of one-dimensional wind field from 

concentration measurements in Eulerian ADM has been solved with the extended Kalman Filtering approach (EKF), 

while source function was assumed to be known.  In the work [ 22] the same idea was used in context of data 

assimilation in regional atmospheric dispersion problem (2D flow had been considered). In that work source 

function again was assumed to be known and ensemble Kalman Filtering method was used together with Eulerian 

ADM.  In the work [ 7], the problem of combined adjustment of wind vector and source rate following the accidental 

release of contaminant was considered. However it was limited to the case of constant wind and source in space and 

in time. 

The objective of the present paper is to develop a data assimilation methodology for improving the wind 

field (variable in space) and source function information with the use of concentration measurements in a 

Lagrangian-Eulerian (puff) atmospheric dispersion model. The motivation for the model choice is that in present 



time puff models are widely used in emergency response systems and in other studies of atmospheric dispersion. For 

instance, RIMPUFF model, [ 9], and puff version of DIPCOT ADM, [ 10], are used in ERSs DERMA, [ 11], and 

RODOS, [1],  CALPUFF model [ 12], which is recommended by Environmental Protection Agency of USA for 

environmental risk studies and is widely used in different atmospheric dispersion and emergency response research, 

e.g., [ 13], [ 14], and many others. However, despite such a wide use of puff models in practical and scientific 

applications, data assimilation methods with such models were rarely applied, especially in comparison with a 

number of applications of data assimilation to Eulerian ADMs. A few familiar to authors studies concerning data 

assimilation in puff models include [ 7],[ 15]-[ 17]. Another important motivation for the model choice is that 

computational algorithm of puff ADMs is in many respects close to that of Lagrangian ADMs, such as [ 10]. Since 

Lagrangian ADMs have advantages over the Eulerian ADMs in predicting atmospheric dispersion close to source, 

[ 18], development of data assimilation algorithms for them is a challenging task. However, stochastic nature of 

equations of particle movement must be addressed in order to apply data assimilation method developed here to 

Lagrangian ADM.  

This work is an extension of the previous work [ 8] where data assimilation methodology has been 

developed for source function estimation in puff ADM. In the present work the variational approach to data 

assimilation in puff ADM is extended to deal with wind field estimation and the adjoint equations for puff ADM are 

derived. Since the numerical tests in the present work were performed for the case of two-dimensional wind field 

with zero vertical velocity, the statement of the problem and methodology are described for the case of 2D wind 

field, comprising only horizontal components. Results of numerical tests in idealized settings – constant wind speed 

and 2D flow – are presented.  

2. Problem formulation 

2.1 General 

In puff ADM the continuous release of the pollutant is represented as a sequence of instantaneous releases –‘puffs’, 

(see, e.g., [ 23]). Each puff i  is characterized by the coordinates of position-vector ( )r ,
T

i i i
x y= (henceforth 

superscript “T ” means transposition). In the considerations below the reference point of the Cartesian coordinate 

system  is located at the ground level and horizontally coincides with the release location. The axes ,x y  are directed 

horizontally. Puffs are transported by the wind, hence the coordinates of the i − th puff are described by the 

differential equation: ( )p
r / u r
i i

d dt = , with initial condition ( ) ( )0
r 0,0

T

i it = , where ( ) ( ) ( )( )pu r r , ri p i p iu v= , is the 

wind vector at the point of puff location,  
0

it is time of release, 
0

it iτ= , τ is time interval between releases of puffs.  

As the wind field is given on the grid of MPP (vectors u ,
Nv R∈ , 

x y
N N N=  where ,

x y
N N  are grid dimensions in 



x and y directions), some kind of interpolation is used to define velocity vector ( )p
u r

i
at the puff’s location. Here 

the following 
21/ r interpolation scheme is used: 
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where ( )T
,

T T
u vυ =  is gridded wind field, ku are the components of vector u , the coefficients ikw define the 

weight of the k − th grid node depending on its squared distance to the puff i , ( ),G G

k kx y  are the coordinates of k -

th grid node and 
2

0r  is a small parameter to avoid discontinuity for zero distances. Thus, the equations of puffs’ 

motion are: 

     ( )/ ,
i i

dr dt f rυ= ɶ .          (2) 

Each puff is characterized by a Gaussian-shaped spatial distribution of matter due to turbulent diffusion. 

Then the matter concentration C  at an arbitrary spatial point of the 3D domain ( ), ,x y z
 
at time t  is calculated as 

sum of contributions of all puffs: 
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Here pN  is the total (maximum) number of puffs, iq  is the release rate corresponding to the time interval of 

appearance of the i -th puff, 
src

iH  is release height of i − th puff, ,xi ziσ σ  are the parameters characterising the 

spatial distribution in the puff and the function ( ), , ( )t i H t iγ τ = − ⋅τ  is Heaviside step function which eliminates the 

influence of non-existing puffs. Total reflection of the cloud from the underlying surface is assumed in (3). 

Relationship (3) also assumes absence of deposition and reactions. In the present work ,xi ziσ σ
 
are parameterized 

by the Pasquill relationships, [ 23]:  
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here il  is travel distance of the puff and ,x xq b , ,z zq b  are parameters depending on the release height and stability 

index. Consider the problem of modelling atmospheric dispersion on time interval ( )0, fT . Assume that during the 



interval ( )0, , fT T T<  measurements are available from K  measurement stations located in spatial points 

( ), ,
T

k k k k
r x y z= , 1 k K≤ ≤ . Assume also that the source of release acts during time interval ( )0,T . Then in 

equation (1): [ ]/pN T= τ , where square brackets means taking an integer part. Denote concentration, measured at 

time t  by the k -th station as ( )o
kC t . The available measurements during interval ( )0,T  can be used to improve 

input parameters of the ADM and thus to improve the modeling results on the whole interval of calculations ( )0, fT . 

The adjustable parameters in the assimilation procedure compose the control vectorψ  of size Ψ . In the present 

work special attention is given to two special cases of control vectors. In the first case only the source function is 

adjusted: ( )1,...,
p

T T
Nq q qψ = = , pNΨ = , while in the second case the velocity field is adjusted and 

T Tψ υ= , 2NΨ = .  In the third case which is considered in the present work both  source function and wind field 

are adjusted and 2 pN NΨ = + . 

Now introduce the state vector of the model which consists of 2D position-vectors and travel distances of all 

puffs: ( ) 3
1 1 2 2, , , ,..., , p

pp

NT T T T
NN

s r l r l r l R= ∈ . Evolution of different components of the state vector is described by 

equation: 

     ( )ˆ ,
ds

f s
dt

υ= ,                 (5) 

where function f̂ is obviously constructed from abovementioned functions ,f f
ɶɶ ɶ  describing right parts in equations 

(2), (4) of puff’s position vector, and travel distance change. Then (3) defines function ( ),
k

C r sɶ  giving the 

relationship between the state vector s  and the concentration at the measurement point k . The problem of data 

assimilation can be posed ([ 4]) as an optimal control problem of minimizing the following objective function with 

respect to control vectorψ , subject to constraints which will be specified below: 
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Here  Bψ is first guess estimation of the control vector, B is covariance matrix of the errors of the control vector, 

which everywhere below is assumed to be diagonal: ( )2 2
1( ), ,...,B B B BB diag σ σ σ σΨ= = , with 2

iBσ being mean 



squared error of the i-th component of first guess estimation of the control vector,  2
oσ is mean squared error of the 

concentration measurements assumed to be constant, /o oN T τ= is number of time subintervals covering interval 

( )0,T  ( oτ is time interval between observations), vector oN KoC R∈  consists of concentrations ( , )
o

C n k , measured 

on each subinterval nt∆ by k -th station. The elements of C
O
 are ordered sequentially as 

follows: ( )( 1) ,
o o o
l n K kC C C n k− += = . The corresponding vector that consists of the calculated concentrations at the 

K stations at the No time intervals (by model (3), (5)) is denoted by ( )MC = Ω ψ , where function Ω  is formally 

introduced relating MC and ψ . Error parameters entering (6) can reflect physical information concerning quality of 

measurements and of a priori information about background estimations of adjusted parameters. Alternatively when 

such estimations are not available they can become purely tuning parameters. 

2.2 Source emission rate adjustment 

In case of source function estimation ( qψ = ), the dependence of both parts of function (6) on ψ  is explicit 

and linear, therefore ( )M
C G= ψ = Ω ψ , where elements of matrix G  are easily constructed from (3). Thus in case 

of qψ = , the minimization of function (6) is a linear regression problem subject to constraints: 0ψ ≥ . Henceforth 

this is refereed as “problem 1”. In case of problem 1, the corresponding background errors are assumed to be 

constant and denoted as: 
2 2

, :1
iB Bq p

const i i N= = ∀ ≤ ≤σ σ .  Thus minimization problem solution depends in that case 

only on one parameter
1 2 2

Bq o
σ σ σ− = , which accounts for weight of regularization (background) term 1J in (6). 

2.3 Wind field adjustment 

The case when ψ consists of wind field is referred below as “problem 2”. In this case the dependence of 

function ( ),
k

C r sɶ  on ψ  is implicit, through dependence of the right parts of (5) on ψ , describing evolution of the 

state vector components. Wind field which minimizes function (6) has to satisfy additional constraints. This now 

will be considered in more detail. 

The atmospheric dispersion module of modern ERSs consists of two main parts: meteorological pre-processor 

(MPP) and ADM. The task of MPP is to calculate the gridded meteorological fields using input (a) prognostic 

meteorological fields calculated by Numerical Weather Prediction (NWP) models on a coarser grid and (b) 

observations. That problem is solved with the use of different physical parameterizations describing atmospheric 

processes together with linear interpolation and data assimilation algorithms [ 24], [ 20]. The meteorological fields 

calculated by MPP’s are also subject to constraints, such as nondivergence of the flow field, [ 24], and/or linearized 

equations describing flow perturbations due to underlying topography [ 25]. In the present paper it is assumed that 



the meteorological field was already calculated by MPP. However corrections to wind field due to assimilation of 

the concentration measurements are to be calculated and they have to satisfy the same relationships which are used 

by the meteorological pre-processors. The resulting gridded wind field ( )T
,

T T
u vυ = is to be non-divergent:  

    ( )
( )1

,

0

yl i N j
x ih xori y jh yori

D D

u v
D

x y

υ ψ

υ
= − +

= + = +

= =

 ∂ ∂
≈ + ∂ ∂ 

,           (7) 

where D  is 2N N×  matrix which approximates divergence operator at each node of the domain of calculations 

including boundaries, ( ),i j  are indices of the grid node in ,x y directions respectively, ( ),
ori ori

x y are coordinates of 

the lower-left corner of the grid and l is the row number.  

The corrections , 1,2
i i bi

u u u i= − =δ to the first guess estimation of the wind field ( ), 1,2
,

bi i b b
u u v= =  

induced by assimilation of concentration measurements are expected to be small in comparison with the magnitude 

of first guess estimation of wind velocity ( )1/ 2
2 2

b b bU u v= +  . Then linearized equations for perturbations of wind 

field used in some meteorological preprocessors (e.g., [ 25]) are valid and can be used as additional linear constraints 

on the minimization problem. For the case of horizontal 2D flows equations from [ 25] are reduced to: 

( ) ( ) ( )( )1

b i b i i
u u x v u y p x

−∂ ∂ + ∂ ∂ = ∂ ∂δ δ ρ δ , where 1, 2i = , 
1 2

,x x x y= = , ρ  is density and pδ  - pressure 

perturbation. After standard rearrangements to exclude pressure perturbations this gives:  

 b b b b

b b b b b b b b

u u v vu u v v
u v u v u v u v

y x y y x x x y y x y y x x x y

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − = + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
.           (8) 

Equation  (8) is approximated inside domain of calculations except boundaries and then can be written:  

     bW Wυ υ= ,               (9) 

Here elements of ( )( )2 2 2x yN N N− − × matrix W  can be easily specified in accordance to numerical 

approximation scheme.  

Thus, problem 2 of wind field correction with concentration measurements can be posed as problem of 

minimizing function (6) with respect to Tψ υ=  subject to linear constraints (7), (8). 

3. Solution methodology 

Since as problem 1 of source emission rate correction with assimilation measurements is a linear regression 

problem, a variety of methods can be used for its solution. Here subroutine “lsqnonneg” from Matlab 7.0 

Optimization Toolbox was used, which finds the nonnegative solution that minimizes function (6) using an 

algorithm described in [ 26]. 



In case of problem 2, which is linearly constrained minimization; subroutine “fmincon” from MATLAB 7.0 

Optimization Toolbox was used, which in case of large scale optimization problem uses a subspace trust region 

method. It is based on the interior-reflective Newton method described in [ 27] and [ 28]. In each iteration an 

approximate solution of a large linear system is obtained using the preconditioned conjugate gradients method. 

Termination conditions are: 
1s s

TolXψ ψ+ − < , 
1s s

J J TolF
+ − < , in which TolX , TolF  are termination 

tolerances for control vector and cost function respectively and s is iteration number. Values 1210TolX TolF −= =  

were used everywhere in the present study. An important practical feature of this subroutine is that it can use 

matrices representing constraints in (7) and (9) stored in sparse format. The algorithm requires gradient of function 

(6) with respect to  ψ  and approximation of nonzero stencil for Hessian matrix for approximate Hessian 

calculations. The nonzero stencil for Hessian (i.e. set of indices, for which elements of Hessian are assumed to be 

nonzero) is specified as: { }, : 1 yStenc i j j i j i j i N= = ∨ = ± ∨ = ± . Thus diagonal of Hessian is assumed to be 

nonzero together with those elements which correspond to linking of the l − th node of computational grid 

( )( 1) yl i N j= − +  with the neighbour nodes.  

Gradient 
1

J ψ∂ ∂  of first term in right part of function (6) is calculated straightforwardly. Second term of 

(6) is approximation of integral: ( ) ( )( )( ) ( )
2

2 2
10 0

1 1
,

T TK
o k
k

o k o

J C t C r s t dt s dt
τ σ=

≈ − = Φ∑∫ ∫ɶ . Therefore, following 

classical optimal control theory, (e.g., [ 29]),   
2

J ψ∂ ∂  can be calculated with the use of adjoint equations: 

      ( ) ( )ˆ , 0T

s s

d
f t T

dt

ϕ
ϕ ϕ+ = −Φ = .             (10) 

 Here vectorϕ  of size 3
p

N  is solution of adjoint system of equations, ( )1 3
,...,

N p
s s s

Φ = Φ Φ , ˆ
s

f is Jacobi matrix of 

function f̂ from (5), which is calculated by differentiating the relationships (1). Note that, due to the fact that puffs 

are not interacting, ˆ
s

f  has block structure with each block of size 3 3× . Hence, solution of (10) can be performed 

separately for each block (each puff). Then gradient 
2

J υ∂ ∂  is calculated from the relationship (which takes into 

account also stationarity of the velocity field): 

      ( ) ( )2

0

ˆ
T

TJ
f t t dtυ ϕ

υ
∂

=
∂ ∫ .             (11) 

In (11) f̂υ is Jacobi matrix of function f̂  from (5), considered as a function of the velocity field, which is also 

calculated by taking appropriate derivatives of relationships (1).  All Jacobi matrices in (10), (11) are to be 

calculated on puff trajectories from forward model run. Hence, in calculating the derivative J ψ∂ ∂ , during 



forward run of the model (i.e., solution of equation (5) for state vector and concentration calculations with (3)), the 

right part for adjoint equations 
s

Φ  is calculated, puff’s trajectories are stored, and in backward run adjoint equations 

are solved and gradient itself is calculated. Discretizations of  (10), (11) are performed following the approach from 

[ 4] (Chapter 21), so that the resulting solution gives gradient of discretized cost function (6).  

When control vector ( ),
T T T

qψ υ=  consists of both – source function components and velocity field, the 

problem of minimization of cost function (6) (problem 3) is solved in the following iteration process:  

    

max

0; ; ;

( )

1;

1; ;

2; ;

b b
s q q

while s s do

s s

solve problem update q

solve problem update

enddo

υ υ

υ

= = =

<

= +
              (12) 

Thus in the overall minimization procedure problems 1 and 2 are solved by turns. Iteration process (12) is 

sort of descent algorithm and always converges to stationary point. However, convergence of (12) to global solution 

of the problem 3, as well as convergence of fmincon to global solution of problem 2 are not guaranteed as far as cost 

functions are non-convex in those cases. 

Note, that presented statement of the problem considers simple puff model. In more complex puff models, 

such as [ 12] turbulent dispersion of matter is accounted by solving separate equations for , ,
x y z

σ σ σ instead of 

parameterization (4). The presented statement of the problem and solution methodology could be straightforwardly 

applied for such cases by including , ,
x y z

σ σ σ  in state vector s instead of puff travel distance.  

4. Calculation results 

In this section results of two calculation cases are presented. In the first case wind velocity was considered as 

constant in space, i.e., the velocity field was not specified on the grid, but was represented by 2 parameters - u  and 

v components of wind vector. All derivations from the previous section are applicable to that case when 1N =  

(thus, dimension of control vector ψ  in problem 2 is 2).  This case is important, since it most clearly demonstrates 

the importance of the wind vector correction for better estimation of the source function. In the second case, which 

is much more complex than the first due to the problem size, the correction of 2D wind field is considered. 

In all cases the so-called “identical twin” experiments ([32]) have been used to evaluate the performance of 

the data assimilation methodology, due to lack of real experimental data. Artificial “concentration measurements” 

have been generated by running the model with a source term and a wind field that are considered as “true” (the 

“truth” run). Then the model was run again (assimilation run), assuming that the source term and wind field are 

unknown. “First guesses” of the source term and wind field were used and the previously generated artificial 



concentration measurements were assimilated, with the aim to evaluate the “true” parameters. Particular details of 

each test case are given below. In addition, to overcome the tendency of identical twin experiments to err on the 

optimistic side ([32]), the observation error has been simulated by adding noise to the synthetic observations. 

4.1 Results with constant wind speed 

In that case the true values of the velocity components in all runs were the same: 10 / , 0true trueu m s v= = . Runs 

with different true source functions had been performed. The release duration in all cases was: 1T h= . The 

modelling duration in all cases was: 2fT h= . Three variants of source functions were considered. The first and 

second true source functions were constant: ( )1 610 /trueq t Bq s= , ( )2 810 /trueq t Bq s= . The third true source 

function first linearly diminished from ( )3 70 10 /trueq Bq s= to ( )3 6/ 4 10 /trueq T Bq s= , then linearly increased to 

( )3 83 / 4 10 /trueq T Bq s= , and then again linearly diminished to the initial value: ( ) ( )3 3 70 10 /true trueq T q Bq s= = . 

The first guess estimation of the wind velocity in assimilation runs was the following: 

0 07 / , 2 /guess guessu m s v m s= = . In all cases the first guess of the source function was the same: 

( )0 710 /guessq t Bq s= . Thus, it differed by an order of magnitude from the all three kinds of true source functions. 

Such errors in source function and wind estimations are realistic in operational practice of real-time ERSs, [ 2]. Note, 

that despite the fact, that 1trueq , 2trueq were constant functions, in the assimilation run that information was not 

available, i.e., source function was not described by one parameter, but was approximated by the vector of the size 

p
N . The coordinates of the measuring stations (i.e., points, from which output from the truth runs was used in 

assimilation runs) were situated at the level 0z = , and had the following horizontal coordinates: 

( ) ( )1 1 4
, 10 ,0

out out
x y m= , ( ) ( )2 2

, 7071 ,7071 ,
out out

x y m m= ( ) ( )3 3
, 7071 , 7071

out out
x y m m= − . For each truth run 

a series of assimilation runs have been performed with different values of σ . The best value of the regularization 

parameter σ  in operational practice, when true concentration field is unknown can be calculated by heuristics 

techniques, such as [ 30]. However trial and error was used in the present study to find the best value of σ because 

true concentration field was known and because it is easier by computational time. The time interval between 

measurements was: 0 600 sτ = . Other parameters were the same in truth and assimilation runs: 0 0 0x y= = , 

10src
iH m= , :1i i Np∀ ≤ ≤ , 300 sτ = , 1.503yp = , 0.833yq = , 0.151yp = , 1.219zq = .   

The quality of the results was evaluated by the normalized mean square error ( NMSE ) and fractional bias 

( FB ), calculated with the use of output concentration fields (in truth and assimilation runs) on the computational 

grid, which covered spatial-time domain ( ) ( ) ( )0 30 20 20 0 2 .x km km y km t h≤ ≤ × − ≤ ≤ × ≤ ≤  with spatial horizontal 



steps 1km , and with time step 600 s. In total more then 4000 values were used for comparisons of truth and 

assimilation runs, while only from 6 to 18 measured values were used in assimilation procedure. Thus evaluation 

was based on global error indicators.  

Table 1 presents minimum by σ  achieved calculated values of NMSE  and FB  for different assimilation 

series (cases). Brief description of each case is given in column ‘description’ of the Table 1. In cases 1-3 wind 

velocity in assimilation run was equal to the true value. Therefore, the errors obtained in those cases were much less 

then the errors in more complex cases 4-9, when initial wind velocity was erroneous. Results of cases 4-5, 6-7, 8-9 

show the influence of adjustment of wind velocity on the accuracy of the results. In all cases 5, 7,9, NMSE  with 

adjustment of wind velocity together with source function is by the factor of 2-200 less then NMSE  in cases 4, 6, 8, 

with adjustment  of the only source function. In the majority of cases FB  also diminishes with adjustment of wind 

velocity, though its reduction is not so significant as that of NMSE .  

Fig. 1 shows example of source functions – true, first guess and adjusted for cases 8 and 9. The effect of the 

wind speed correction in assimilation procedure on the adjustment of the source function is evident, which confirms 

results following from Table 1. Similar pictures were obtained for the rest of the runs.  

4.2 Results with two dimensional flow 

Common parameters of truth and assimilation runs were the following. Velocity field was calculated on the grid 

with 40 40
x y

N N N= × = × cells covering spatial domain ( ) ( )0 40 40 40x km km y km≤ ≤ × − ≤ ≤  with spatial 

horizontal steps 2x2 km. The release duration was 1T h= .  Model equations (5) were integrated with time step 

100
m

sτ = and concentrations calculated with the same time step o mτ τ= . Other parameters were the 

following: 10src
iH m= , :1i i Np∀ ≤ ≤ ,  1.503yp = , 0.833yq = , 0.151yp = , 1.219zq = .   

The truth run in that case was characterized by the following conditions. Wind field was characterized by 

rotation around point with coordinates ( ) ( )0 0 0 4
, 0, 5 10 .r x y m= = − ⋅  with angular velocity 42 10 1/ s−= ⋅ω , so that: 

( ) ( )0
,

true
u x y y y= −ω , ( ) ( )0

,
true

v x y x x= − −ω  .  At the point of release, the wind was blowing in x  direction 

with magnitude 10 /m s , and the resulting vector field is presented at Fig. 2-a.  

The assimilation runs were characterized by the following conditions. The modelling duration was 

2
f

T h= . The first guess wind field (Fig. 2-b) was constant in space and was equal to true wind vector in the point of 

release: ( ) ( )0
, 0,0

guess true
u x y u= , ( ) ( )0

, 0,0
guess true

v x y v= . This condition reflects the fact, that in operational 

practice of many ERSs meteorological measurements are usually available at the point of potential release. That 

information can be used by meteorological pre-processors together with NWP data in data assimilation procedure, to 



construct the wind field, which can be locally very close to the observed, [ 20]. However the overall error of such 

constructed first guess wind field in present case was quite large. The so-called ‘vector wind difference’ error 

indicator was used for estimation of the wind field error, which simultaneously reflects error in magnitude and in 

wind direction, [ 31]: 

    ( ) ( )( )
1/ 2

2 2
truth truth

vwd u u v v= − + − ,              (13) 

where triangular brackets indicate arithmetic average. Thus, error of first guess wind field was: 0 6 /guessvwd m s=  

which is comparable to errors, that can occur in operational meteorological practice [ 31].   

The measurement points were located at three concentric circles  around the release point with radiuses 

1
5mR km= ,

2
10mR km= , 

1
30mR km=  and at each circle they were distributed with uniform angular step δφ  which 

varied in different tests from 3� to 030 starting from 0° direction, which coincided with positive direction of axis x . 

The following errors parameters of function (6) were set in all cases. Parameter 2

0
σ  in all cases was set to 

2 5

0
10−=σ . In case of adjustment of wind field (problem 2) error of the background field B Buσ σ=  was defined by 

the following relationship: ( ) ( ) ( )2 22 2 2

inf 0
1/ 1 exp / 1

Bui l luobs u
R Rσ σ σ= − + . Here the first term accounts for decrease of 

error closer to observation (release) point, 
l

R  is distance from l − th grid node to release point, 
inf l

R  is radius of 

influence of wind observation, which was taken 
inf

5
l

R km= , 2

uobs
σ  is squared error of observation assumed to be 

small enough to nudge velocity in the release point to measured value ( 2 4 2 210 /
uobs

m sσ −= ) and 2

0u
σ  is squared error 

of background field uninfluenced by observation (far from release point) which varied in different tests.  When 

source function was adjusted, parameter
2

Bq
σ was set to zero. 

In the same way as in section 4.1 results of assimilation were evaluated by global error estimations - 

NMSE  and FB which were calculated on the basis of truth and predicted concentrations on the spatial grid, 

coinciding with the velocity grid and with temporal resolution coinciding with model integration step. Thus in total 

about 45 10⋅ values were used in NMSE  calculations. 

Consider first special case, when only wind field was adjusted. Source function in that case was 

constant ( ) ( )0 7
10 /

guess true
q t q t Bq s= = . Results of the corresponding tests are presented in Table 2. Fractional bias 

error of first guess and assimilation runs in all tested cases was small ( -2FB<10 ) and thus is not presented. The run 

with first guess estimation of velocity field led to 0 1.3guessNMSE = , 0 6 /guessVWD m s= .  As it can be seen from 

Table 2, despite the fact, that source function was known, it is rather difficult to find minimum of cost function due 

to very high dimension of the problem, and convergence to good solution was possible only when both constraints 



(7) (non-divergence) and (8) (linearized flow) were used. In contrast, when constraints were not used (case 3) or 

when only non-divergence constraint was used (case 2) final analyzed velocity and concentration fields were worse 

then first guess estimation (VWD and NMSE  increase). As follows from case 4, the quality of the first guess 

velocity field is crucial for finding an appropriate solution. When error of the background field was very large, 

algorithm converged to completely inappropriate solution with 500VWD = , though in that case not only cost 

function was reduced, but even global error estimate NMSE was essentially reduced by the factor of 10. Cases 5-7 

demonstrate sensitivity of the results with respect to angular resolution of observation network. With decreasing the 

resolution (increasing δφ  from 3� to 30� ) improvement in both, NMSE  and FB  was reached, however 

effectiveness of assimilation nmseς  measured as relative decrease: 0 /nmse guess assimNMSE NMSEς =  fell from 65 

to 2.6. Effectiveness vwdς , measured as 0 /vwd guess assimVWD VWDς =  decreased significantly slower from 1.4 to 

1.13 . Such behaviour can be attributed to the fact that NMSE is most sensitive to errors in velocities close to the 

source of release, where concentrations are larger. From the other hand the fact that values of vwdς  are significantly 

lower then nmseς  demonstrates high sensitivity of NMSE to accuracy of velocity field. 

Figures 2 and 3 presents wind vectors and concentration distributions in true run, in first guess run and in 

assimilation run (case 1 from Table 2). The effect of data assimilation on both distributions is evident from these 

Figures. An interesting feature observed from Figures 2 and 3 is that velocity field is modified not only in the area of 

presence of cloud, but in the entire domain, even in the areas outside the cloud extent. This is possible only due to 

the influence of constraints (7), (8).   

Now consider the more complex problem, when both source function and wind field are unknown. 

Conditions of all experiments were almost the same as in previous case. The following true source functions 

( )true
q t  were used. At zero time: ( ) 70 10 /trueq Bq s= , then it linearly increased to: ( ) ( )/ 4 0true trueq T q=α , then 

it linearly decreased to ( ) ( ) ( )3 / 4 1 0true trueq T qα= , and then again linearly increase to the initial value: 

( ) ( )0true trueq T q= . First guess source function was constant and equal: ( ) ( )0
0

guess true
q t q= . Cases with 10=α  

and 2=α  were considered. In that series of experiments the ‘measured’ concentrations were perturbed with white 

Gaussian noise to account for measurement uncertainty. Squared standard deviation of Gaussian distribution was 

equal to abovementioned assumed mean squared error of observations 2

o
σ . Results of assimilation of both perturbed 

and unperturbed concentrations are presented in Table 3. As it can be seen from Table 3, perturbation of 

concentration measurements with Gaussian noise didn’t essentially influence the results of assimilation.  When 

angular resolution of observation network was coarse ( 30δφ = � ) in both cases - 10=α  and 2α =  decrease in 



NMSE  was reached while VWD increased. Increase in VWD occurred because relatively small errors in adjusted 

source function (Figure 4) lead to incorrect adjustment of velocity field. Thus improvement in NMSE  was reached 

due to adjustment of source function only. However, when angular resolution of observation network was 

sufficiently small ( 15δφ ≤ � ) for both 10=α and 2α = decrease in both concentration errors NMSE  and wind field 

error VWD  was reached.  

5. Conclusions 

In present work the methodology of combined adjustment of source function and wind field inputs of the puff 

Atmospheric Dispersion Model (ADM) through data assimilation of concentration measurements has been 

developed. Variational approach to data assimilation problem was adopted, in which cost function, characterising 

difference of predicted and measured concentrations was minimized with respect to either wind field and source 

function. Resulting wind field solution is subject to linear equality constraints following from nondivergence  and 

linearized flow conditions. Adjoint equations for puff ADM are derived and solved numerically to find gradient of 

cost function with respect to wind field. The minimization problem is solved with the use of Matlab 7.0 

Optimization Toolbox.  

‘Identical twin’ numerical experiments have been performed for two kinds of idealized conditions: 1) case 

of constant in time and in space wind velocity (0D wind field); and 2) case of 2D wind field. After truth run had 

been performed, errors in source function and/or wind field had been introduced in first guess run. The error of first 

guess source function varied from zero to 1000% with respect to true source function. Vector wind difference error 

(VWD ) of wind field was 3.6 m/s in first case and 6 m/s – in second. Those errors then had been reduced through 

the data assimilation procedure.  

Results of the first case show very essential increase of accuracy of the resulting concentration field when 

wind velocity was corrected together with source function in comparison with the case when only source function 

had been corrected. Resulting normalized mean square error NMSE  reduced by the factor of from 2 to 200 under 

the influence of wind field correction. Second case was much more complex in comparison to the first one due to 

essential increase in the size of minimization problem (by 3 orders of magnitude).  Two main sets of numerical tests 

were performed in the second case. In the first set true source function was known and only wind field was adjusted, 

while in the second set both source function and wind field were adjusted. 

It was found that decrease in wind field error is possible only when suitable set of constraints is used (both 

non-divergence and linearized flow relationships ). When constraints were not used, or when only non-divergence 

constraint was used improvement in wind field error was not possible. Quality of the first guess wind field was 

crucial for wind field correction, especially in the vicinity of release, where concentrations are large. When large 



error of first guess wind field was assumed, correction was also not possible. Provided that the abovementioned 

conditions were fulfilled in tests with known source function VWD  reduced by about 1.7 0.7 m/s ÷ and NMSE - by 

a factor 65 2.6 ÷ depending on angular resolution of the  observational network, which varied from 3 to 30 decimal 

degrees. In the second set of tests, when relatively large errors (by a factor of 10) in source function were introduced 

level of reduction of NMSE was in all cases very large (by a factor of 100> ) due to adjustment of source function. 

However reduction of VWD in that case by about 1.7 1.1 m/s ÷ was achieved for angular resolutions of 

observational network: 3 15δφ≤ ≤� � . For larger angular resolution ( 30δφ = � ) VWD increased.  

The presented methodology can be extended to cope with more realistic 3D flows and also for other kinds 

of problems, such as source location and plume rise estimations. Of course more tests will be needed in such cases.  

6. Acknowledgements 

The present work has been supported through the NATO reintegration grant NUKR.RIG.982362 “Atmospheric 

Pollution Data Assimilation for Emergency Response”. Authors are grateful to Editor and anonymous referees for 

their useful comments.  

References 

1. Raskob W. European approach to nuclear and radiological emergency management and rehabilitation 

strategies (EURANOS). Kerntechnik 72 (4) (2007) 172-175. 

2. Sjoreen A.L., et.al. Rascal Version 2.1 User’s Guide NUREG/CR-5247. U.S. Nuclear Regulatory 

Commission, Washington, 1994. 

3. Rojas-Palma C. , et.al.  Data assimilation in the decision support system RODOS.  Radiation  Protection 

Dosimetry 104 (2003) 31-40. 

4. Dhall J.M., Lewis S., Lakshmivarahan, S. D. Dynamic Data Assimilation: A Least Squares Approach. 

Cambridge University Press, 2006. – 655 p. 

5. Enting I.G. Inverse Problems in Atmospheric Constituent Transport. Cambridge University Press, UK,  

2002. 

6. Quelo D., Sportisse B., Issnard O. Data assimilation for short range atmospheric dispersion of 

radionuclides: a case study of second-order sensitivity. J. of Environmental Radioactivity 84 (2005) 393-408  

7. Krysta M., Bocquet M., Sportisse B., Isnard O., 2006. Data assimilation for short-range dispersion of 

radionuclides: An application to wind tunnel data. Atmospheric Environment 40, p. 7267-7279 

8. Tsiouri V., et.al. Development and first tests of data assimilation algorithm in Lagrangian puff atmospherid 

dispersion model. Proc of Int. Conf HARMO 11, Cambridge, 2-5 July 2007, p. 182-186 



9. Mikkelsen, T., Thykier-Nielsen, S., Hoe, S., 2007. Medium range puff growth. Developments in 

Environmental Science, Chapter 2.16, (6), pp. 243-252 

10. Davakis E., Bartzis J.G. and Andronopoulos S. DIPCOT: A Lagrangian model for atmospheric dispersion 

over complex terrain. RODOS Report No RODOS(WG2)-TN(99)-01, (available from www.rodos.fzk.de ) 

11. Sørensen, J.H., Baklanov, A., Hoe, S., 2008. The Danish emergency response model of the atmosphere 

(DERMA). Journal of Environmental Radioactivity 96 (1-3), pp. 122-129 

12. Scire J.S. Strimaitis D.G., Yamartino R.J., 1998. A user’s guide for the CALPUFF dispersion model 

(Version 5). Earth Tech. Inc., Concord, MA (http://www.src.com/calpuff/calpuff1.htm ) 

13. Gilliam, R.C., Huber, A.H., Raman, S., 2005. Metropolitan-scale transport and dispersion from the New 

York World Trade Center following September 11, 2001. Part II: An application of the CALPUFF plume model. 

Pure and Applied Geophysics 162 (10), pp. 2005-2028 

14. Barsotti, S., Neri, A., Scire, J.S., 2008. The VOL-CALPUFF model for atmospheric ash dispersal: 1. 

Approach and physical formulation. Journal of Geophysical Research B: Solid Earth 113 (3), art. no. B03208 

15. Eleveld, H., Kok, Y.S., Twenho ̈fel, C.J.W., 2007. Data assimilation, sensitivity and uncertainty analyses in 

the Dutch nuclear emergency management system: A pilot study. International Journal of Emergency Management 

4 (3), pp. 551-563 

16. Cheng, Y., Reddy, K.V.U., Singh, T., Scott, P., 2007. CBRN data fusion using puff-based model and bar-

reading sensor data. FUSION 2007 - 2007 10th International Conference on Information Fusion, art. no. 4408018 

17. Anke Beyer-Lout, Young G.S., Haupt S.E., 2008. Concentration assimilation into wind field models for 

dispersion modelling. 15th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA 

(available from http://ams.confex.com/ams/pdfpapers/132516.pdf ). 

18. Nguyen, K.C., Noonan, J.A., Galbally, I.E., Physick, W.L., 1997. Predictions of plume dispersion in 

complex terrain: Eulerian versus Lagrangian models. Atmospheric Environment 31 (7), pp. 947-958 

19. Davakis S., et. al.,  Data assimilation in meteorological pre-processors: effects on atmospheric dispersion 

simulations. Atmospheric Environment 41 (2007) 2917-2932. 

20. Kovalets I., et.al. Introduction of data assimilation procedures in the meteorological pre-processor of 

atmospheric dispersion models used in emergency response systems. Atmos. Env.  38/3 (2004) 457-467 

21. Daley R. Estimating the wind field from chemical constituent observations: experiments with a one 

dimenstional extended Kalman filter. Monthly Weathe Review 123 (1995) 181-198. 

22. Stuart A.L., et.al. Ensemble-based data assimilation and targeted observation of a chemical tracer in a sea 

breeze model. Atmos. Env. 41 (2007) 3082-3094 



23. Thykier Nielsen S., Deme S., Mikkelsen T., Description of the Atmospheric Dispersion Module RIMPUFF. 

RODOS report WG2_TN98_02 (1998) (http://www.rodos.fzk.de) 

24. COST Action 710 Final report. Harmonisation of the pre-processing of meteorological data for atmospheric 

dispersion models. Fisher B.E.A., et al. (eds.), L-2985 European Commission, Luxembourg, (1998) 

25. Dunkerley F., et.al. LINCOM Wind Flow Model: Application to Complex Terrain With Thermal 

Stratification. Phys. Chem. Earth (B). 26(10) (2001) 839-842 

26. Lawson, C.L. and Hanson R.J. Solving Least-Squares Problems,  Prentice-Hall, Chapter 23, p. 161, 1974. 

27.  Coleman, T.F. and  Li Y.An Interior, Trust Region Approach for Nonlinear  Minimization Subject to 

Bounds. SIAM J. on Optimization 6 (1996)  418-445. 

28. Coleman, T.F. and Li Y. On the Convergence f Reflective Newton  Methods for Large-Scale Nonlinear 

Minimization Subject to Bounds.  Mathematical Programming. 67 (1994) 189-224. 

29. Fedorenko R.P., Approximate Solution of Optimal Control Problems. Nauka, Moscow, 1978 (in Russian). 

30. Wahba G., Wendelberger J. Some new mathematical methods for variational objective analyses using 

splines and cross-validation. Monthly Weather Review 108 (1980) 1122-1143. 

31. Stauffer D.R., and Seaman N.L. Use of four-dimensional data assimilation in a limited area mesoscale 

model. Part I. Monthly Weather Rev.118 (1990) 1250-1277. 

32. Daley, R., Atmospheric Data Analysis, Cambridge University Press, p.339, 1991 



 

Abbreviated title 

Improvement of source and wind field input of ADM  



Figure captions 

 

Figure 1. Source functions: true, first-guess and after assimilation runs. Case numbers correspond to the column 

‘N
o
’ of the Table 1. Case N

o
 8 correspond to adjustment of source function only; case N

o
 9 – to adjustment of both 

source function and wind velocity components.  



 

Figure 2. Velocity fields: a) true; b) first-guess; c) after assimilation run (case 1 of Table 2). Length of arrow is 

proportional to magnitude of velocity. True velocity in the point of release – 10 m/s.  

 

Figure 3. Near – ground concentration distributions after 1 hour after start of release: a) true; b) first guess; c) after 

assimilation run (case 1 of Table 2). Isolines of concentrations correspond to: 10
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Figure 4. Source functions: true, first guess and after assimilation run in case 4 of Table 3.  

 

 

 


