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A B S T R A C T   

The source location and the time history of a pollutant released in an aquifer are very relevant information for 
the design of effective remediation strategies. Usually, their identification requires solving an inverse problem 
when the only available information about the groundwater contamination event is a sparse set of concentration 
data collected in the aquifer at a few points downstream from the source. Here, a novel approach is proposed to 
solve the inverse problem: the use of the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) in the 
context of source contamination identification. This method is used for the simultaneous determination of the 
time history and the source location of a pollutant release based on observed concentration data and a calibrated 
numerical model of groundwater flow and mass transport in the aquifer. The ES-MDA is demonstrated in two 
case studies. The first one is based on an analytical solution of the flow and transport equations, aimed at the 
estimation of the source location and the release history of a nonreactive pollutant spreading in a two- 
dimensional homogeneous aquifer from a point source. For this case, different alternatives are considered for 
the spatial distribution of the observation points, the concentration sampling frequency, the ensemble size and 
the use of covariance localization and covariance inflation techniques in the formulation of the smoother. The 
purpose of this case is to test the new approach, analyze its performance and also to identify the conditions that 
render the problem ill-posed and, therefore, without solution; also, in this case, a new spatiotemporal iterative 
localization is presented. In the second case study, we use real data collected in a laboratory sandbox that re
produces a vertical cross-section of an unconfined aquifer with two-dimensional quasi-parallel flow between 
constant-head boundaries. The results show that the location, time and number of observations, the ensemble 
size and the application of covariance localization and covariance inflation techniques have an impact on the 
final solution. A well-designed monitoring network and the application of covariance corrections improve the 
performance of the ES-MDA and help avoiding ill-posedness and equifinality. The application to laboratory data 
validates the potential of ES-MDA to simultaneously estimate the time history and the source location of a 
pollutant released in groundwater in real cases.   

1. Introduction 

Monitoring, protection and restoration of aquifers have received a lot 
of attention in the past decades, thanks to the growing interest in 
environmental issues and the importance of groundwater quality for 
water supply. The first steps in any remediation strategies of a polluted 
aquifer should be the identification of the source location and the release 
history of the contaminant. They would allow to identify the cause of the 

contamination, to implement an effective remediation plan and to share 
the costs among the responsible parties. 

When groundwater contamination is first detected, the source loca
tion and the release history are usually unknown. Recovering these 
variables from sparse data of the spatial distribution of the pollutant 
concentration in the aquifer is a type of inverse problem. Inverse 
problems are inherently ill-posed, which means that the solution is 
generally non-unique and could be not stable to small perturbations of 
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the data. Several deterministic and stochastic methods have been pro
posed to solve this problem. The first category includes Tikhonov reg
ularization (Skaggs and Kabala, 1994); nonlinear optimization with 
embedding (Mahar and Datta, 1997); non-regularized nonlinear least 
squares (Alapati and Kabala, 2000); progressive genetic algorithms (Aral 
et al., 2001); constrained robust least squares (Sun et al., 2006) and 
heuristic harmony search algorithms (Ayvaz, 2010). The second cate
gory includes probability-based methods such as statistical pattern 
recognition (Datta et al., 1989); minimum relative entropy (Woodbury 
and Ulrych, 1996; Woodbury et al., 1998; Cupola et al., 2015); geo
statistical approaches (Snodgrass and Kitanidis, 1997; Michalak and 
Kitanidis, 2004; Michalak and Kitanidis, 2004; Neupauer et al., 2000; 
Butera and Tanda, 2003; Butera et al., 2006; Butera et al., 2012; Gzyl 
et al., 2014; Cupola et al., 2015); empirical Bayesian methods combined 
with Akaike’s Bayesian Information Criterion (Zanini and Woodbury, 
2016); Bayesian global optimization (Pirot et al., 2019) and ensemble 
Kalman filter methods (Xu and Gómez-Hernández, 2016; Xu and Gómez- 
Hernández, 2018; Chen et al., 2018; Xu et al., 2020). 

However, only a few of the presented studies allow to simultaneously 
identify the source location and the release history of a groundwater 
contaminant. The method proposed by Aral et al. (2001) used a pro
gressive genetic algorithm to solve an iterative nonlinear optimization 
problem, in which the source location and release history were explicitly 
defined as continuous unknown variables and contaminant concentra
tions were used as observations. Sun et al. (2006) combined a con
strained robust least squares estimator with a global optimization solver 
for iteratively identifying release histories and source locations on the 
basis of concentration measurements. Ayvaz (2010) used an optimiza
tion method based on the heuristic harmony search algorithm to identify 
locations and release histories for pollution sources, minimizing re
siduals between the simulated and measured contaminant concentra
tions. All these methods are deterministic and do not allow to quantify 
the uncertainty of the results. 

Butera et al. (2012) applied a Bayesian geostatistical approach for 
the simultaneous identification of the release function and the source 
location based on concentration data. The methodology has then been 
tested by Cupola et al. (2015) on real data collected in a laboratory 
sandbox. The method requires a preliminary delineation of possible 
sources and some hypotheses about the structure of the unknown release 
function. The approach aims to recover the contaminant release history 
considering all the possible sources simultaneously and selecting the 
location where the highest amount of pollutant is estimated. The method 
adopts a transfer function approach for the solution of the forward 
problem (Butera et al., 2006). 

We propose a new procedure for the joint identification of the source 
location and the release history of a pollutant in an aquifer: the use of an 
Ensemble Smoother with Multiple Data Assimilation (ES-MDA) in the 
context of contaminant source identification. The ES-MDA, introduced 
by Emerick and Reynolds (2012, 2013a), has been mainly applied to 
reservoir history matching problems (Emerick and Reynolds, 2013b; 
Fokker et al., 2016; Zhao et al., 2016), but its popularity is growing also 
in hydrology (Lan et al., 2018; Li et al., 2018; Li et al., 2019; Kang et al., 
2019; Song et al., 2019; Todaro et al., 2019; Bao et al., 2020). It is an 
iterative data assimilation method based on the Ensemble Kalman Filter 
(EnKF), initially proposed by Evensen (1994). In particular, the ES-MDA 
is a variant of the Ensemble Smoother (ES) proposed by van Leeuwen 
and Evensen (1996). Unlike the EnKF, which performs a sequential 
update one step at a time assimilating the data as they are collected, the 
ES and the ES-MDA simultaneously assimilate all the available obser
vation data. Also, the ES-MDA iteratively assimilates the same data 
multiple times leading to better results for strongly nonlinear problems 
than the ES, which performs a single global update (Evensen, 2018). 

The main advantages of the ES-MDA are: i) its capability to be used 
with almost any forward model for the solution of inverse problems; ii) 
the possibility of being implemented with parallel computing, and iii) its 
capability to select a best estimate under different criteria and to assess 

its uncertainty, through the analysis of an ensemble of realizations. 
Compared with the Bayesian geostatistical approach (Butera et al., 
2012), the ES-MDA does not require the explicit time-consuming 
calculation of sensitivity matrices to solve the inverse problem, since 
they are embedded in the covariance matrices of the ensemble. More
over, it allows the simulation of groundwater flow and mass transport 
even in complex cases. 

As all the inverse approaches, also the proposed method computes 
the unknown parameters based on the knowledge of observed data. In 
this work, the parameters to identify are represented by the spatial co
ordinates of the contaminant source location and the time-discretized 
release history; the observations are sparse concentration data 
measured at different monitoring locations and times. Notice that, in 
general, piezometric head data will be available, which could also be 
assimilated and used in the solution of the inverse problem; it is not the 
case in the laboratory experiment described next, for which no piezo
metric head data were available. 

Two applications of the ES-MDA are presented. First, the ES-MDA is 
used to solve a synthetic case from the literature with the purpose of 
showing its capabilities and to obtain guidelines for its application to 
real cases. Second, the ES-MDA is used to validate the methodology on 
experimental data collected in a laboratory sandbox that mimics an 
unconfined aquifer. 

The synthetic case study allows to investigate in detail the inverse 
procedure with a limited computational effort. In particular, we evalu
ated the impact of the observation sampling scheme and different al
gorithm settings in the context of ill-posedness of inverse problems. The 
ill-conditioning increases as uncertainties about the model increase and 
as the quantity and quality of the observed data decrease. Therefore, it is 
important to design a monitoring network that makes a good compro
mise between valuable information about the concentration evolution 
and the costs of monitoring actions, which would limit the number of 
monitoring points. 

The study also addresses the problem of undersampling present in 
ensemble-based methods; it occurs when the ensemble size is so small 
that it is not statistically representative of the variability of the un
knowns. Although large ensembles mitigates this problem, the compu
tational cost increases with the ensemble size; therefore, it is 
advantageous to solve the problem with the smallest possible ensemble. 
Covariance localization has been developed to overcome this problem; it 
helps in removing long-range spurious correlations and mitigates the 
ensemble rank deficiency, allowing the use of a small number of re
alizations. Localization can be achieved by different ways (Houtekamer 
and Mitchell, 1998; Hamill et al., 2001; Anderson, 2007; Chen and 
Oliver, 2009). Covariance localization is generally based on the spatial 
distance between parameter locations and observations; in this study, 
parameters and observations are also time-dependent, furthermore the 
distance between them is not fixed since the source position is unknown, 
what complicates the use of standard localization techniques. Todaro 
et al. (2019) proposed a temporal localization considering time lapses 
rather than spatial distances. A new localization approach is presented, 
which takes into account both spatial and temporal distances and iter
atively updates the distance between the unknown parameters and the 
observations. Covariance inflation is also considered to overcome 
undersampling problems (Anderson and Anderson, 1999; Anderson, 
2007; Li et al., 2009; Liang et al., 2011; Wang and Bishop, 2003; Zheng, 
2009); it modifies the original ES-MDA adjusting the ensemble spread to 
avoid smoother divergence. 

Hence, the presented study aims to provide an efficient methodology 
to solve the contaminant source identification problem. The manuscript 
is organized as follows: first, the forward problem, its solution and the 
ES-MDA procedure are described. Then, the synthetic and the laboratory 
case study are presented and discussed. The manuscript ends with some 
conclusions. 
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2. Methods 

2.1. Forward problem 

The forward problem is based on the groundwater flow and mass 
transport equations. In particular, we consider an incompressible fluid 
in saturated porous media and a non-reactive contaminant injected in 
the aquifer at a point subject to advection and dispersion (Bear, 1972; 
Bear and Verruijt, 1987). Assuming a uniform porosity, initial condition 
C(x, 0) = 0, and boundary condition, C(∞, t) = 0, where C(x, t)

[
ML− 3]

is the solute concentration, the transport equation can be solved by the 
convolution integral 

C(x, t) =
∫ t

0
s(x0, τ)g(x, t − τ)dτ. (1) 

The term s(x0, t)
[
MT− 1] is the contaminant flux injected into the 

aquifer through the source located at x0 given by 

s(x0, t) = C0(t)⋅q0(x0, t), (2)  

where C0(t)
[
ML− 3] is the concentration of the released pollutant at time 

t and q0(x0, t)
[
L3T− 1] is the injection flow rate. The term g(x, t − τ) is a 

Kernel function that represents the response at location x and time t to a 
pulse injection at the source location x0 and time τ. 

Defining with D(x)
[
L2T− 1] the hydrodynamic dispersion coefficient 

tensor and with v(x, t)
[
LT− 1] the effective flow velocity, in two- 

dimensional cases, with uniform flow, vy = 0 and constant dispersion 
coefficients, the Kernel function can be determined analytically. With 
these assumptions, the solution of Eq. (1) is 

C(x, y, t) =
∫ t

0
s(x0, y0, τ)

1
4π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
DxDy(t − τ)

√

⋅exp

[

−
((x − x0) − vx(t − τ) )2

4Dx(t − τ) −
(y − y0)

2

4Dy(t − τ)

]

dτ.

(3) 

For complex cases in which the flow field is not uniform (for 
instance, non-isotropic and heterogeneous aquifers), the advec
tion–dispersion equation can not be solved analytically and it is neces
sary to employ numerical methods. Here, for the second case study for 
which the analytical solution cannot be used, the flow equation is solved 
using the numerical model MODFLOW (Harbaugh, 2005), and the 
transport equation with MT3DMS (Zheng and Wang, 1999). 

2.2. Ensemble smoother with multiple data assimilation 

In this work, the iterative Ensemble Smoother with Multiple Data 
Assimilation method (ES-MDA) is used to solve a parameter estimation 
problem in which the unknown parameters are updated based on the 
available observations. The ES-MDA procedure is extensively described 
by Emerick and Reynolds (2013a) and Evensen (2018); here, an over
view of the method and the scheme to perform the spatiotemporal 
iterative localization are presented. 

The vector of unknown parameters is defined as: X =
(
xs, ys, s1, s2,…, sk

)T, where xs is the x-coordinate of the source, ys is the 
y-coordinate and (s1, s2,…, sk) is the discretized-in time release history; 
the number of parameters to be estimated depends on the duration of the 
groundwater pollution event to be simulated and the time step selected 
for the discretization. The vector of observations (D) is composed of 
measured concentrations at different times and monitoring locations. A 
first fundamental assumption is that a reliable forward model is avail
able since the relationship between parameters and observations must 
be known; in our case, the forward model is represented by a calibrated 
groundwater flow and solute transport model, that is, the parameters of 
both models will not be subject of further identification. Having a cali
brated flow and transport model is probably not a very realistic 

assumption but the purpose of the current paper is the testing of the ES- 
MDA for the identification of time-varying point contaminant sources. 
The simultaneous estimation of the parameters controlling the flow and 
transport equations is left for further investigation. 

The ES-MDA scheme can be summarized in the three following steps:  

1. Initialization step. 
An initial ensemble of parameters must be defined taking into 

account all the available prior information. Often, no data are 
available and the ensemble is generated using prior distributions 
based on expert knowledge. The release history is modeled as a 
continuous function of time and, for this reason, imposing some 
degree of continuity in the initial realizations will facilitate the 
identification process. This can be achieved with proper parame
terization of the time functions to be generated. The ensemble of the 
spatial coordinates of the source is generated using random values 
selected over a uniform distribution wide enough to bound the true 
location. After the initialization step, the number of iterations has to 
be decided and the next two steps are repeated as many times as 
iterations there are.  

2. Forecast step. 
Each realization j of the ensemble is used as input to the forward 

model and an ensemble of predictions (Y) at measurement locations 
over time is obtained. For the first iteration, Y is generated using the 
initial ensemble of parameters; then the ensemble of predictions is 
generated using the updated parameters from the last iteration, 

Yj,i = ψ
(
Xj,i
)
. (4)  

The operator ψ(⋅) denotes the forward model and i is the iteration 
index.  

3. Update step. 
Parameters are updated for each realization of the ensemble j and 

iteration i according to the following equation 

Xj,i+1 = Xj,i +Ci
XY
(
Ci

YY + αiR
)− 1
(

D +
̅̅̅̅
αi

√
εj − Yj,i

)
, (5)  

where εj is the observation error, which is drawn from a Gaussian 
distribution of mean zero and covariance matrix R,N (0,R); ​ αi is a 
coefficient that, at each iteration i, inflates the measurement error 
and its covariance matrix. The values of αi are chosen following a 
decreasing sequence; in this way, the magnitude of the updates for 
the first iterations, when the misfit between predictions and obser
vation may be too large, is small to reduce the magnitude of the 
initial updates; also, the coefficients αi must satisfy the following 
expression (Emerick and Reynolds, 2013a) 

∑N

i=1

1
αi

= 1, (6)  

where N is the total number of iterations. Ci
XY is the cross-covariance 

matrix between parameters and predictions and Ci
YY is the autoco

variance matrix of predictions. They are computed from the 
ensemble at each iteration i as 

Ci
XY =

1
Ne − 1

∑Ne

j=1

(
Xj,i − Xi

)(
Yj,i − Yi

)T
, (7)  

Ci
YY =

1
Ne − 1

∑Ne

j=1

(
Yj,i − Yi

)(
Yj,i − Yi

)T
, (8)  

where Ne is the total number of ensemble realizations, Xi is the 
ensemble mean of the parameters and Yi is the ensemble mean of the 
predictions. When covariance localization is applied, Eq. (7) and (8) 
are modified as follows 
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C̃
i
XY = ρi

XY∘Ci
XY, (9)  

C̃
i
YY = ρYY∘Ci

YY, (10)  

where ∘ represents the elementwise multiplication and ρi
XY and ρYY 

are correlation matrices based on spatial and temporal distances 
between parameters and observations and between observations and 
observations, respectively. The correlations in space (ρi

XY,s,ρYY,s) and 
time (ρXY,t ,ρYY,t) are computed independently and then coupled via a 
Schur product 

ρi
XY = ρi

XY,s∘ρXY,t, (11)  

ρYY = ρYY,s∘ρYY,t. (12)  

We use the fifth-order correlation function introduced by Gaspari 
and Cohn (1999), which smoothly reduces the correlations between 
points for increasing distances and cuts off long-range correlations 
above a specific distance 

ρ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1
4

(δ
b

)5
+

1
2

(δ
b

)4
+

5
8

(δ
b

)3
−

5
3

(δ
b

)2
+ 1, 0⩽δ⩽b,

1
12

(δ
b

)5
−

1
2

(δ
b

)4
+

5
8

(δ
b

)3
+

5
3

(δ
b

)2

− 5
(δ

b

)
+ 4 −

2
3

(δ
b

)− 1
, b⩽δ ≤ 2b,

0 δ⩾2b,

(13)  

where δ represents the parameter-observation or observation- 
observation distances in space (δi

XY,s, δYY,s) or time (δXY,t , δYY,t). The 
spatial distances between parameters and observations are unknown 
since the coordinates of the source are to be estimated; therefore, 
δi

XY,s must be updated at each iteration i considering the source 
located at the coordinates given by the ensemble means of xs and ys. 
The coefficient b characterizes the space (bs) or time (bt) distance at 
which the covariances become zero. 

At the end of each update step, linear relaxation and covariance 
inflation are used to prevent smoother divergence. Linear relaxation 
reduces the magnitude of the update at the end of an iteration. When 
linear relaxation is used, the expression of Eq. (5) is replaced with 

X̃j,i+1 = (1 − w)Xj,i+1 +wXj,i, (14)  

where w is a relaxation coefficient between 0 and 1. Covariance 
inflation is applied using the scheme proposed by Anderson and 
Anderson (1999) where the ensemble is linearly inflated around its 
mean by an inflation factor (r) slightly larger than 1 

X̃j,i+1 = r
(

Xj,i+1 − Xi+1

)
+Xi+1. (15)  

In this work, the update step is performed in log-space in order to 
prevent the appearance of unphysical negative values. The vector of 
parameters is log transformed before the update step and back 
transformed into the parameter space before the forecast step. 

Then, the scheme is repeated from step 2, after setting Xj,i = Xj,i− 1, 
until the last iteration. 

3. Case studies 

The proposed approach is demonstrated on two case studies. First, 
the ES-MDA is applied to an analytical case study with the aim to show 
the capabilities of the method to simultaneously identify a contaminant 
source location and its release history in an aquifer. In this case, the 

forward model requires a small computational time and the results can 
be compared with a reference solution. This also allows to investigate 
different configurations of the inverse algorithm, in order to determine 
the optimal setting to be used for real cases. The second application 
validates the methodology on experimental data collected in a labora
tory sandbox experiment. 

3.1. Analytical case 

The analytical case simulates a pollution event in an infinite homo
geneous two-dimensional aquifer, with uniform flow, as result of the 
injection of a nonreactive contaminant at a point (Butera and Tanda, 
2003). It is assumed that the water discharge q0(x0, t) is of unit value and 
small enough such that it does not affect the uniform groundwater flow. 
Therefore, the release history s(x0, t), defined in Eq. (2), is equivalent to 
the concentration history C0(t). All quantities are considered with un
specified but consistent units. The uniform velocity and the dispersion 
coefficients are assumed known: v = 1, Dx = 1 and Dy = 0.1. We use the 
same expression for the release function sr(x0, t) used elsewhere (Skaggs 
and Kabala, 1994; Woodbury and Ulrych, 1996; Snodgrass and Kitani
dis, 1997; Butera and Tanda, 2003; Butera et al., 2012; Zanini and 
Woodbury, 2016) to define the reference solution 

sr(x0, t) = exp

(

−
(t − 130)2

50

)

+ 0.3exp

(

−
(t − 150)2

200

)

+0.5exp

(

−
(t − 190)2

98

)

.

(16) 

The actual source location x0 is x0 = 50 and y0 = 20. The concen
tration history has a total duration of 300; it is discretized into 101 in
tervals with a time step of Δt = 3 resulting in a total number of 
parameters to be estimated Np = 103 (the two spatial coordinates plus 
the 101 temporal solute fluxes). The reference release function, depicted 
in Fig. 1, is used to obtain the reference observations, which are 
computed by evaluating Eq. (3) using numerical integration. 

Different test cases are carried out to investigate the impact of the 
observation sampling scheme, ensemble size, covariance localization 
and inflation techniques. The test cases will be evaluated in terms of 
equifinality, that is, when different source functions are identified that 
are consistent with the observations, and in terms of sensitivity to the 
initial ensemble values. For this purposes, for each test case, 100 ex
periments were performed to identify the source history changing only 
the random component of the initial ensemble and the observation 
measurement errors. At the end of each experiment, the performance of 
the method is evaluated using the following metrics:  

- The Nash–Sutcliffe efficiency criterion (NSE) to evaluate the 
agreement between the actual and estimated release history: 

Fig. 1. Analytical case: reference release history.  
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NSE =

⎛

⎜
⎜
⎜
⎝

1 −

∑Np − 2

i=1

(
Xi − sr,i

)2

∑Np − 2

i=1

(
sr,i − sr

)2

⎞

⎟
⎟
⎟
⎠

⋅100, (17)  

where Np − 2 is equal to 101, the number of intervals used to dis
cretize s(t); ​ sr,i represents the discretized source function and is the i- 
th actual amount of released contaminant, sr is the time average of 

the reference release history 
(

1
Np − 2

∑Np − 2
i=1 sr,i

)

and Xi is the ensemble 

mean of the i-th estimated amount of released contaminant 
(

1
Ne

∑Ne
j=1Xj

i, with Xj
i the final estimate of parameter Xi in realization j). 

The closer to 100, the better.  
- The root mean square error (RMSE) between observations and model 

predictions: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1

(
Di − Yi

)2

m

√
√
√
√
√

, (18)  

where Di is the i-th observed concentration and Yi is the ensemble 

mean of the i-th predicted concentration 
(

1
Ne

∑Ne
j=1Yj

i, with Yj
i the 

prediction of Yi in realization j). The closer to zero, the better.  
- The spatial distance between the true and estimated source location 

(L): 

L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xs − x0)
2
+ (ys − y0)

2
√

, (19)  

where xs and ys are the ensemble means of the estimated spatial 
coordinates of the source and 

(
x0, y0

)
is the true source location. The 

closer to zero, the better. 

These metrics are compared with reference threshold values to 
evaluate the performance of the method. We consider three cases: i) 
good performance when the reproduction of the observed concentra
tions is good, the identification of the source location is good and the 
identification of the release function is good; ii) equifinality perfor
mance, when reproduction of the observed concentrations is good, but 
neither the source location nor the release function are well identified; 
iii) poor performance, otherwise:  

i) Good performance when RMSE < RMSEthr and NSE > NSEthr1 
and L < Lthr,  

ii) Equifinality performance when RMSE < RMSEthr and 
(NSE < NSEthr2 or L > Lthr),  

iii) Poor performance, otherwise. 

There is not a standard criterion for the definition of metric thresh
olds to assess goodness-of-fit (see e.g. Moriasi et al., 2007; Ritter and 
Muñoz-Carpena, 2013). In this study, we consider the performance of 
the method to be good if NSE > 70 and unsatisfactory if NSE < 60. The fit 
between predictions and observations is considered to be good when the 
RMSE is less than the maximum assumed error. Since the observation 
errors are normally distributed, the maximum error is defined as 4σ, 

where σ is its standard deviation. The selected threshold values (RMSEthr,

NSEthr1,NSEthr2,Lthr) are summarized in Table 1. With these criteria, it is 
possible to define the percentage of successful tests, tests with multiple 
solutions and failed tests for each case, on the basis of the 100 
experiments. 

3.1.1. Impact of the observation network geometry and sampling frequency 
The effect of the spatial distribution of the observation points is 

evaluated. For this case, a large ensemble was used to avoid the need of 
using localization or inflation techniques in the implementation of ES- 
MDA. The observation network geometries used, displayed in Fig. 2, are:  

A. Concentrations collected at two monitoring points, located on the 
same line as the source (y = 20) at points (150, 20) and (200, 20), 
and 31 sampling times from T = 0 up to T = 450 with a time step 
Δt = 15. The total number of observations is m = 2⋅31 = 62.  

B. Concentrations collected at 21 monitoring points distributed on the 
same line of the source (y = 20) at uniform intervals between x = 90 
and x = 290; only one observation from each location at time T =

300. The total number of observations is m = 22⋅1 = 22.  
C. Concentrations collected at four monitoring points distributed on the 

same line of the source (y = 20) at x-coordinates 80, 115, 150 and 
185, and the same 31 sampling times of set A. The total number of 
observations is m = 4⋅31 = 124.  

D. Concentrations collected at four monitoring points distributed on the 
line x = 150 and at y-coordinates 11, 16, 21 and 26; the sampling 
times are the same as for sets A and C. The total number of obser
vations is m = 4⋅31 = 124. 

A random observation error ε normally distributed with zero mean 
and variance 5⋅10− 8 for all the performed tests is considered. The initial 
ensemble of parameters is composed of 1000 realizations. The re
alizations of the source coordinates are uniformly distributed random 
values selected in the range [5, 80] for x and [10, 30] for y. The re
alizations of the release history are normal functions described by the 
following expression: 

f (t) = Δ+Γ⋅
1

σ
̅̅̅̅̅
2π

√ e
− 1

2

(
t− μ

σ

)

, (20)  

where t is the time, Δ is a base amount of released concentration, Γ is the 
volume under the Gaussian function of mean μ and variance σ2. These 
coefficients are selected randomly from uniform distributions, 
Δ ∈ U[1⋅10− 10, 1⋅10− 3],Γ ∈ U[10,40], μ ∈ U[89, 210] and σ ∈ U[6, 59]. 
The ES-MDA is run with 10 iterations and a decreasing series of α values 
following the sequence [113.33; 75.55; 50.37; 33.58; 22.39; 14,92; 
9.95; 6.63; 4.42; 2.95]. 

Table 1 
Threshold values used to define test 
criteria.  

RMSEthr  4σ  
NSEthr1  70 
NSEthr2  60 
Lthr  5  Fig. 2. Analytical case: location of the measurement points for sets A, B, C and 

D; the red diamond is the actual source location. 

V. Todaro et al.                                                                                                                                                                                                                                 



Journal of Hydrology 598 (2021) 126215

6

Table 2 summarizes the results of the four test cases, T denotes the 
percentage of successful tests over the 100 synthetic experiments and E 
indicates the percentage of synthetic experiments in which equifinality 
is detected. 

The observation network geometry greatly impacts the final results. 
The synthetic experiments that give reliable solutions (NSE > 70 and L 
< 5) are less than 21% for observation sets A, B and C. Furthermore, 
equifinality occurs in large proportions for cases A and B, and to a lesser 
extent for case C. Only in case D, the ES-MDA is able to identify suc
cessfully the source location and the release function without 
equifinality. 

3.1.2. Impact of the ensemble size and application of localization and 
inflation techniques 

The test cases designed to investigate the impact of the ensemble 
size, covariance localization and inflation techniques make use of the 
observation set D. We tested five ensemble sizes Ne of 1000, 500, 250, 
100 and 50 with and without covariance corrections. The number of 
iterations, α values, and distributions used to generate the initial en
sembles are the same ones used in the previous section. Covariance 
localization is applied using the coefficients bs equal to 210 and bt equal 
to 300. The factor r used for the covariance inflation is equal to 1.01. The 
results obtained from each set of 100 synthetic experiments are reported 
in Table 3. The ES-MDA performs better for increasing ensemble sizes 
and when covariance inflation and localization techniques are applied. 
The percentage of successful tests is high for large ensembles, with even 
better numbers when covariance corrections are applied. The presence 
of equifinality is detected when the ensemble size reduces, but the 
corrections on the algorithm help to reduce it. The effects of covariance 
and inflation techniques are more evident for small ensemble sizes; 
considering Ne equal to 100, the percentage of successful tests is 46% for 
the experiments without corrections and 64% for those with corrections; 
multiple solutions are detected for 43% of the experiments without 
corrections and for 14% of those with corrections. The tests computed 
with the smaller ensemble size (Ne=50) lead to unsatisfactory results 
with a percentage of successful tests lower than 45% and a high prob
ability of equifinality. 

For the sake of brevity, we show only the results of one of the tests 
performed with a small ensemble size of 100 realizations and with 
corrections in the computation of the covariance. Among the 100 syn
thetic experiments, we selected as the best estimate of the release 
function the median of the successful tests, and we use the set of suc
cessful tests to build uncertainty intervals about the median. In Fig. 3, 
the reference solution and the ensemble median with its 95% uncer
tainty interval are depicted. Fig. 4 shows a comparison between 
observed and predicted concentrations at observation locations. The ES- 
MDA reproduces quite well the release history and the source location 
estimate is very close to the true one (x0=50, y0=20). The NSE is 80.46 
and the ensemble means of x and y coordinates are, respectively, equal 
to 52.66 (±1.78, 95% uncertainty interval) and 20.00 (±0.06, 95% 
uncertainty interval). The test leads to a good match between observa
tions and predictions with an RMSE at the last iteration equal to 
3.3⋅10− 4 and a narrow 95% uncertainty interval. 

3.2. Experimental case 

The second case study uses a laboratory experimental dataset 

following the work by Cupola et al. (2014). The experimental device is a 
sandbox that reproduces an unconfined aquifer characterized by two- 
dimensional flow in a vertical plane. The sandbox has external di
mensions of 120 cm × 14 cm × 73 cm and it is made of three parts along 
the longitudinal direction: upstream and downstream tanks and an 

Table 2 
ES-MDA performance for observations sets A, B, C and D and ensemble size 
Ne=1000. T indicates the percentage of successful tests and E the percentage of 
tests that present equifinality.  

A B C D 

T:10% T:19% T:21% T:98% 
E:53% E:34% E:12% E:0%  

Table 3 
ES-MDA performance for observation set D and ensemble sizes of 1000, 500, 
250, 100 and 50, with and without corrections on the covariance calculation. T 
indicates the percentage of successful tests and E the percentage of tests that 
present equifinality.  

Ne  without corrections with corrections 

1000 T:98% T:100% 
E:0% E:0% 

500 T:85% T:96% 
E:8% E:0% 

250 T:71% T:87% 
E:19% E:4% 

100 T:46% T:64% 
E:43% E:14% 

50 T:20% T:45% 
E:60% E:29%  

Fig. 3. Analytical case: actual and estimated release history with 95% uncer
tainty interval resulting from a test performed with Ne = 100 and observation 
set D. 

Fig. 4. Analytical case: observed and predicted concentrations with 95% un
certainty interval. 
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internal chamber of 95 cm × 10 cm × 70 cm, which contains the porous 
media consisting of glass beads with diameter in the range between 0.75 
mm and 1 mm. The flow is governed by constant upstream and down
stream water levels equal to 59.9 cm and 53.6 cm above the horizontal 
bottom of the tank, respectively. Fluorescein sodium salt was used as 
tracer solution and it was injected at a variable mass rate through an 
injector located in the upstream part of the sandbox at coordinates x =

14.25 cm and y = 32.75 cm, that extends through the entire thickness of 
the sandbox. The test had a duration of 2200 s; the injection started at 
time 310 s and ended at 1800 s; the concentration of the fluorescein 
sodium salt is constant and equal to 20 mg⋅l− 1, while the flow rate 
changes over time. The resulting mass rate ranges from 0 to about 55 
μg⋅l− 1 and presents three peaks of different magnitude. The observed 
concentrations are recorded over the entire sandbox by taking pictures 
with a digital camera and then converting luminosity into concentration 
through image processing techniques (for more details, see Citarella 
et al. (2015)). Modeling is performed in two dimensions, since no lateral 
movement orthogonal to the sandbox plane is expected. A comparison 
between the results obtained with a two-dimensional model and a three- 
dimensional one is reported by Uribe-Asarta (2019), showing no dif
ferences between the two models. 

The inverse methodology requires a calibrated numerical model able 
to describe as accurately as possible the forward process. Groundwater 
flow was modeled with MODFLOW 2005 (Harbaugh, 2005) and mass 
transport with MT3DMS (Zheng and Wang, 1999). The effect of the 
injection on the background flow is not negligible; therefore, a transient 
flow model is considered. The numerical model was preliminarily cali
brated by an inverse procedure not reported here for brevity. After the 
calibration, and for the purposes of the source identification, this model 
is used throughout. Table 4 summarizes the parameters of the flow and 
transport models and Fig. 5 shows the hydraulic conductivity field after 
the calibration process. The estimated field is slightly heterogeneous and 
conductivity is anisotropic, even though the sandbox was filled with 
glass beads of almost the same size with the intention of reproducing an 
isotropic homogeneous field. Our interpretation of the lower conduc
tivity values towards the bottom of the sandbox is that it is due to 
additional compaction during the filling process. 

Since the concentration of the contaminant is known, the estimation 
of the release history is limited to identifying the injected flow rate. The 
release duration is discretized into 72 intervals with a time step of Δt = 3 
s resulting in a total number of parameters Np = 74, of which two are the 
spatial coordinates of the source. The initial ensemble of parameters is 
made up of 81 realizations (Ne = 81); the spatial coordinates of the 
source are random values selected from uniform distributions x ∈ U[5,
30] cm, and y ∈ U[30, 34] cm. The initial realizations of the injected flow 
rate history follow expression Eq. (20), with parameters selected 
randomly from the following uniform distributions, Δ ∈ U [1⋅10− 10, 
1⋅10− 1], Γ ∈ U[800, 1000], μ ∈ U[490,1400] and σ ∈ U[60, 365]. The 
four monitoring points are vertically distributed on the line x = 54.75 
cm and at y-coordinates 29.00, 32.75, 34.75 and 36.75 cm. For each 
monitoring point, the observed concentrations are recorded at 45 sam
pling times from T = 0 s to T = 2200 s (total number of monitoring data 
is m = 180). The random measurement error ε is assumed normally 
distributed with zero mean and variance 1⋅10− 2 (mg⋅l− 1)2. The ES-MDA 
with 6 iterations and decreasing α=[63.0; 31.5; 15.8; 7.88 3.9; 2.0] is 
used for the inversion. Covariance localization and covariance inflation 

are applied using the coefficients bs=200, bt=2500 and r = 1.01, and 
linear relaxation with the coefficient w = 0.1. 

Fig. 6 shows the results of the experimental case; the ensemble mean 
of the release history with its 95% confidence interval and the true so
lution are depicted. The ES-MDA leads to a good agreement between the 
two curves with an NSE value equal to 98.34 and with a satisfactory 
representation of peak magnitudes and times. The ensemble means of 
the x and y coordinates of the source are, respectively, equal to 14.71 cm 
(±0.45 cm, 95% uncertainty interval) and 32.91 cm (±0.14 cm, 95% 
uncertainty interval); the distance between the true and estimated 
source location is less than 0.5 cm. In Fig. 7, the experimental and 
predicted observations are compared. The retrieved source parameters 
reproduce quite well the observed concentrations with a narrow 95% 
uncertainty interval; the RMSE at the last iteration is equal to 0.96 
mg⋅l− 1, which is comparable with the experimental observation errors. 

4. Discussion and conclusions 

In this paper, a novel application of the Ensemble Smoother with 
Multiple Data Assimilation (ES-MDA) is proposed for the simultaneous 
identification of the source location and the release history of a 
groundwater contamination event from observed sparse concentration 
data collected downstream from the spill. The procedure is tested by 
means of an analytical case study and an experimental one. 

The analytical case serves to demonstrate the capability of the ES- 
MDA to solve this type of inverse problem and to analyze the impact 
of the different settings on the final identification. The impact of the 
observation network geometry and density, ensemble size, covariance 

Table 4 
Transport and hydraulic parameters of the numerical model.  

Porosity 0.37 
Average hydraulic conductivity (cm s− 1)  0.673 

Ratio of horizontal to vertical conductivity (Kh/kv) 3.267 
Specific storage coefficient (cm− 1) 10− 4 

Longitudinal dispersivity (cm) 0.178 
Transverse dispersivity (cm) 0.065  

Fig. 5. Hydraulic conductivity field. The red diamonds denotes the actual 
source location. The white dots are the monitoring points. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article). 

Fig. 6. Experimental case: actual and estimated release history with 95% un
certainty interval. Time 0 s represents the time at which injection starts. 
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and inflation techniques and also the effect of different sets of initial 
realizations are investigated. The aim was to find out a configuration 
that leads to a reliable solution and mitigates the ill-conditioned nature 
of inverse problems. Equifinality is analyzed in the analytical case, 
finding that there are some network geometries that may lead to 
acceptable results (in terms of reproduction of the observed concentra
tions) but with very different release functions. 

The effect of the observation network geometry and density is 
evaluated considering four sets of observed concentrations, a large 
ensemble size (Ne=1000) and the other factors being the same. The 
results show that location, time and number of observations signifi
cantly impact the final solution obtained by the ES-MDA; for the sets in 
which the observations are located in a line parallel to the main flow 
direction, the percentage of successful tests is low and equifinality is 
detected. Instead, for the set with the observations in a line orthogonal 
to the main flow direction, the number of successful tests is 98% and the 
algorithm simultaneously estimates the release history and the source 
location. We find that placing the observation locations in a line 
orthogonal to the main flow directions is more informative than placing 
the observation locations along the same line. In the latter case, it is easy 
to think of multiple solutions that should lead to the same observations, 
for instance, by estimating the source location in the direction orthog
onal to flow symmetrically with respect to the line of observations. This 
indicates the importance of a good design of the observation network, 
since if observations provide poor information, the ill-posed inverse 
problem is difficult to solve and the impact of random factors increases; 
it is also noteworthy that, in real cases, only a limited number of con
centration measurements are available given the field sampling costs; 
for this reason, an optimal design of new monitoring points has a great 
relevance. 

The observation set orthogonal to the flow direction is used to check 
the effect of the ensemble size and the application of covariance local
ization and covariance inflation techniques in the performance of the ES- 
MDA. In this paper, a new procedure to apply the covariance localization 
is presented. Covariance localization was commonly performed taking 
into account the fixed spatial distance between observation-observation 
and parameter-observation only; here, the spatial and temporal dis
tances are both considered and, furthermore, the parameter-observation 
spatial distance is iteratively updated since the location of the parame
ters is an unknown of the problem. 

The results show that the ES-MDA works better when large 

ensembles and the correction to the covariances are used, demonstrating 
the capability of the proposed spatiotemporal iterative localization to 
improve the ES-MDA performance. The percentage of successful tests 
increases with the ensemble size and the covariance corrections and, at 
the same time, the chances that equifinality happens decrease. Covari
ance inflation and, in particular, covariance localization, overcome the 
undersampling problems noticed in the ensemble-based methods; and 
for this reason, their effects are more evident for small ensemble sizes. 
The tests performed with an ensemble size of 50 realizations lead to 
unreasonable results with a low percentage of passed tests and a high 
percentage of tests with multiple solutions. We suggest to use, for this 
type of problems, ensemble sizes greater than the number of unknown 
parameters to identify. 

It is noteworthy to point out that another aspect to take into account 
is the impact on the solution of the errors on both the observations and 
the model structure. Small measurement errors can improve the ES-MDA 
results when the model is perfect and the observations are uncorrupted, 
as in the synthetic case study. However, overfitting problems and 
ensemble collapse can arise for real cases, which are always affected by 
uncertainty in the forward model and measurement noises. In these 
cases, the modeler should use an appropriate level of fit based on the 
quality of the available observation and the model. The effects of the 
errors on the ES-MDA performance will be investigated in future works. 

The experimental case study uses real data collected in a laboratory 
test. The experimental device is a sandbox that reproduces an uncon
fined aquifer under controlled conditions; it allows to validate the ES- 
MDA methodology in a real test case. The algorithm parameters, such 
as the monitoring network and the ensemble size, were chosen after the 
results of the analytical study. For this case, the initial ensemble of 
source coordinates has been generated considering a limited suspect 
area, which guarantees that all the realizations of the ensemble are 
representative. This decision was taken based on preliminary tests per
formed with large suspect areas. Even if it is not mandatory that the 
initial ensemble contains the solution, a well designed ensemble helps to 
reach better results. 

The results prove the capability of the ES-MDA to solve this type of 
inverse problem in real cases, when the available observations are 
usually noisy. The method reproduces very well both the contaminant 
release history and the spatial coordinates of the source; the NSE is about 
98 and the distance between the true and estimated source location is 
less than 0.5 cm. 

To the best of our knowledge, this is the first work that uses a sto
chastic method for the simultaneous identification of the source location 
and the release history. It allows to assess the estimation uncertainty and 
to directly estimate the spatial coordinates of the source, unlike, for 
example, the Bayesian geostatistical approach that only identifies the 
most probable location among a set of possible source points defined a 
priori. 

Another innovative aspect of this work is the use of the ES-MDA 
method for the estimation of time-dependent parameters. In hydroge
ology, ensemble Kalman methods are usually applied for the investiga
tion of groundwater field parameters that are time-independent such as 
porosity or hydraulic conductivity. In this study, the parameters to be 
estimated are identified performing a discretization in time of the 
release history of a contaminant into an aquifer, which is time 
dependent. 

In summary, the proposed procedure is a novelty method able to 
simultaneously recover the release history and the source location of a 
groundwater pollutant on the basis of sparse observed concentration 
data. A well-designed monitoring network and the application of 
covariance localization and covariance inflation techniques lead to 
satisfactory results and reduce the inherent equifinality encountered in 
parameter estimation problems. 

Fig. 7. Experimental case: observed and predicted concentrations with 95% 
uncertainty intervals. Time 0 s represents the time at which injection starts. 
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