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a b s t r a c t

The accidental release of radioactive materials from nuclear power plant leads to radioactive pollution.
We apply an augmented ensemble Kalman filter (EnKF) with a chemical transport model to jointly es-
timate the emissions of Perfluoromethylcyclohexane (PMCH), a tracer substitute for radionuclides, from a
point source during the European Tracer Experiment, and to improve the forecast of its dispersion
downwind. We perturb wind fields to account for meteorological uncertainties. We expand the state
vector of PMCH concentrations through continuously adding an a priori emission rate for each suc-
ceeding assimilation cycle. We adopt a time-correlated red noise to simulate the temporal emission
fluctuation. The improved EnKF system rapidly updates (and reduces) the excessively large initial first-
guess emissions, thereby significantly improves subsequent forecasts (r ¼ 0.83, p < 0.001). It retrieves
94% of the total PMCH released and substantially reduces transport error (>80% average reduction of the
normalized mean square error).

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

During nuclear power plant accidents, the release of radioactive
materials in the atmosphere leads to radioactive pollution. Near
real-time information of radioactive material distribution is
essential for doses estimation and in such way important for de-
cision makers for planning accurate countermeasures like shel-
tering, evacuation and iodine-prophylaxis (Hiemstra et al., 2011).
As a result, atmospheric dispersion models become critical and
indispensable tools for nuclear power plant accident management
(Benamrane et al., 2013; Connan et al., 2013). Dispersionmodels are
also essential for assessing the external and internal radiological
doses (Yoshida and Kanda, 2012). The largest source of un-
certainties in the model predictions is the emission of radioactive
materials (Stohl et al., 2012; Yasunari et al., 2011), which is usually
unavailable, especially in the critical early stages of a nuclear power
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plant accident. In the Fukushima Daiichi power plant accident, for
example, the damages caused by earthquake and the ensuing
tsunami rendered the backup power system inoperative, and
consequently there was no information of radioactive material
release from the monitoring system (Chino et al., 2011). Adding to
the myriad challenges for accurate model forecasts are large un-
certainties of meteorological fields used in the forecast models
(Jones, 2011). It is known the uncertainties in meteorological fields
dominate the total transport error (Bei et al., 2012; Liu et al., 2011).
The predictive capability of any dispersion model is severely
limited by these aforementioned uncertainties.

Several studies have attempted to reconstruct the emissions of
radionuclides from the Fukushima accident using observational
datasets and chemical transport models (e.g., Ten Hoeve and
Jacobson, 2012 and references therein). Chino et al. (2011), for
instance, rescaled emissions of radionuclides based on comparisons
of model predictions versus observations. More sophisticated in-
verse modeling methods were also used to reconstruct the emis-
sions (e.g., Saunier et al., 2013; Stohl et al., 2012; Eslinger et al.,
2014; Winiarek et al., 2012, 2014). These studies have offered
valuable information for the accurate assessment of the environ-
mental and healthy impacts of the accident (Ten Hoeve and
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Fig. 1. The WRF-POLAIR model domain, PMCH release point (black triangle), and
surface PMCH measurement network (gray dots, 162 stations).
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Jacobson, 2012). In these inversion studies, the state vectors include
only radionuclide emission rates and the simulations were con-
ducted in a deterministic way. Thus it is difficult to take into ac-
count the uncertainties in the meteorological data used to drive
their models. Additionally, the considerable time delay inherent in
these studies makes it impractical for nuclear power plant emer-
gency management.

The sequential assimilation method of ensemble Kalman filter
(EnKF) (Evensen, 1994) is a powerful alternative for nuclear power
plant emergency management. It has such advantages as efficient
on-line calibration, relatively straightforward implementation and
superior scalability for parallel computing. Furthermore, EnKF can
simultaneously account for the various uncertainties in both
emissions and meteorological data through the augmentation of
the state vector, and simultaneously optimize parameters such as
emissions in addition to the usual model state (Hu et al., 2010). Such
augmentation has been applied in climate modeling (Annan et al.,
2005), regional weather forecast (Hu et al., 2010), and carbon cy-
cle (e.g., Kang et al., 2011; Miyazaki et al., 2011). Tang et al. (2011,
2013) has applied the augmented EnFK to simultaneously adjust
the initial conditions and emissions of ozone and CO over Beijing
and its surrounding areas. However, different from the air quality
studies, where a lot of a priori knowledge (e.g., emission inventory)
is available in literature, scarce (hence uncertain) a priori knowl-
edge of accidental release is available, and order of magnitude
discrepancy can exist between the first-guess and the actual
emissions. And it is nearly impossible to directly validate the
inversed emissions of common pollutants against the “actual”
emissions. Zheng et al. (2007, 2009, 2010) has applied similar
methodology, using the Monte Carlo dispersion model combined
with EnKF to reconstruct the source release rate for short range
dispersion. We have also developed a modified EnKF method in
conjunction with a Lagrangian puff-model to simultaneously
improve the model prediction and reconstruct the source terms
(Zhang et al., 2013, 2014). However, these studies are only appli-
cable for short range (usually under about 50 km) due to the lim-
itation of the Lagrangian dispersion model. To the best of our
knowledge, the approach has not been applied in studying acci-
dental releases from nuclear power plants at the continental scale.
In addition, it is imperative that the quality of the retrieved emis-
sions of radioactive materials and improvements to model forecasts
are thoroughly validated with observations.

The goal of this study is twofold. We seek to simultaneously
estimate (and reconstruct) the emissions of radioactive materials
from nuclear power plant accidents and to improve the dispersion
forecast. We propose an innovative strategy for retrieving the
emissions (with temporal resolution) despite scarce (hence un-
certain) a priori knowledge of the emissions. Specifically, we apply
an ensemble Kalman filter (EnKF) (Evensen, 1994) with an
augmented dynamic state vector to simulate the emissions and
subsequent dispersion of the releasedmaterials. In addition, we use
perturbed wind fields to account for the uncertainties of meteo-
rological data. We demonstrate and evaluate the method with the
first European Tracer Experiment (ETEX-1) (Van dop et al., 1998),
where Perfluoromethylcyclohexane (PMCH) was released as a
tracer substituting for radioactive materials. Sensitivity tests are
conducted to investigate the influence of different factors on the
performance of the EnKF scheme.

2. Material and methods

2.1. Experiment and framework of modeling description

The goal of ETEX was to test the reaction, communications, and
modeling capabilities of the European Union member countries in
case of a nuclear emergency similar to the Chernobyl accident
(Girardi et al., 1998). The European Commission, the World Mete-
orological Organization, the International Atomic Energy Agency
and the U.S. Department of Energy together sponsored the exper-
iment. It provides a unique dataset from a controlled point source
release and an extensive monitoring surface network across
Europe. The dataset is usually used to validate the newly developed
data assimilation scheme or inverse method (e.g., Issartel and
Baverel, 2003; Bocquet, 2007). We use the data of the first exper-
iment ETEX-1 in this study. PMCH was released at Monterfil
(48�0303000N, 2�0003000W), Brittany, France. PMCH is an inert gas,
insoluble in water hence negligible wet (and dry) deposition. It has
a half-life time of ~100 years. Perfluoromethylcyclohexane can be
detected at extremely low concentrations, so making it ideal as a
tracer. The release started at 16:00 UTC on October 23, 1994, and
lasted 11 h and 50 min. A total of 340 kg PMCH was released at an
average flow of 7.98 g s�1. Air samples were taken at 168 stations up
to 90 h after the initial release. The average distance between any
two neighboring stations is ~80 km. There are 162 stations in the
domain used here as shown in Fig. 1 andwe use the data from these
stations. The measurements are surface PMCH concentration re-
ported every 3 h. The measurement resolution is 0.01 ng m�3.

We conduct dispersion simulations of PMCH during the entirety
of ETEX using the chemistry-transport model (CTM) POLAIR 3D
(version 1.8.1), an Eulerian model of the POLYPHEMUS platform
(Mallet et al., 2007). The domain plot is shown in Fig. 1. The hori-
zontal resolution is 0.2� and there are nine vertical levels from the
surface to 3184 m altitude for a total of 190 (longitude) � 98
(latitude) � 9 (altitude) grid points. Vertical turbulent diffusion is
computed following Louis (1979). Except for the lower boundary
condition at the surface, all other boundary conditions are null,
following Winiarek et al. (2012). Meteorological data is from the
Weather Research and Forecasting (WRF, version 3.1) (Skamarock
et al., 2008), with a 20 km horizontal resolution (226 � 121 grid
points) and 28 vertical layers. We initialize WRF simulation with
NCEP/NCAR Reanalysis 1 data (Kalnay et al., 1996). The WRF
simulation starts at 00:00 UTC, October 23, which is 16 h before the
initial release of PMCH and lasts through 00:00 UTC, October 28,
whereas the POLAIR 3D simulations start at the initial release time
and last through 23:30 UTC, October 27. A 2-min time-step is used
for both WRF and POLAIR 3D simulations. We conduct two WRF-
POLAIR 3D simulations e one assimilates PMCH observations via
EnKF with an unknown and uncertain initial PMCH emission rate,
as discussed in Section 3, whereas the other is free running (i.e.,
without assimilation) but uses the actual (known) PMCH emission
rates.
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2.2. The ensemble Kalman filter (EnKF)

The ensemble Kalman filter (EnKF) (Evensen, 1994) has been
increasingly used in geosciences (Evensen, 2003). Ensemble Kal-
man filter (EnKF) is a sequential data assimilation method, which is
used recursively to produce a statistically optimal estimate of the
underlying system state by merging the model prediction and the
current observations. Different from the original Kalman filter,
which is only applicable to linear systemmodel, the EnKF initializes
an ensemble of forecast models, each of which represents a
possible state of the system and the error statistics are predicted
using the collection of model states. The ensemble state vectors
constitute the state matrix:

X ¼ ðx1 x2 … xNÞ2Rns�N (1)

where x is the state vector of the atmospheric dispersion system,
the subscript i (i ¼ 1, 2, …, N) denotes the individual state vector of
the ensemble, ns is the length of the state vector and N denotes the
size of the ensemble.

We use here the EnKF module of Mallet et al. (2007) with up-
dates. Specifically, we expand the usual state vector, which consists
of tracer concentrations in a CTM, to include emission rate, as
discussed below. We use an ensemble size of 30. During the ETEX
experiment, the first set of measurements was reported 2 h after
the initial release, so the assimilation starts at that time and con-
tinues every 3 h thereafter. We assimilate the PMCH observations
(3-h averages) by updating 3-h averaged model states of the
ensemble and leaving the deviations from the time averages un-
changed, following the approach of Dirren and Hakim (2005) for
the assimilation of time-averaged observations. After the assimi-
lation cycle, the deviations from the time averages are added back
to the updated 3-h averaged model states, and the forecasts for the
next 3 h start from the newmodel states. The ensemblemean of the
updated 3-h averaged model states is referred to as “assimilation
analysis” hereafter. The observation errors are set as 20% of the
observed values (Straume et al., 1998) and are assumed to be
spatiotemporally uncorrelated.

We perturb wind and vertical eddy diffusivity to simulate the
uncertainty in the meteorological data and turbulent mixing. Spe-
cifically, we rescale the original winds from WRF to generate an
ensemble of perturbed wind fields. The scaling factors are 0.5e1.5,
uniform for each perturbation but varies from one perturbation to
another. We choose the range because the majority of WRF wind
forecasts are within a factor of two of the observations during ETEX
(Stohl and Koffi, 1998). Likewise, we perturb vertical eddy diffu-
sivity coefficients with factors that are uniformly distributed be-
tween 0.5 and 3.0. We use the relatively large range because of the
typically large uncertainty associated with eddy diffusivity
Fig. 2. The actual and a priori emission rate ensemble used.
parameterizations (Kumar and Sharan, 2012). At this stage, we have
not yet used the forecasts from real ensemble prediction system
(EPS). We note that discrepancies will exist between the perturbed
ensemble and the ensemble forecasts from EPS system, and the
performance can be sensitive to the ensemble of meteorological
data, so the sensitivity tests will be conducted and discussed in
Section 3.4.

We set the initial emission rate as uniformly distributed be-
tween 0 and 100 g s�1 e any value between 0 and 100 g s�1 is
equally probable of being the actual emission rate, whereas the
actual rate is 7.98 g s�1. The rather large upper limit is based upon
the inventory of the hazardous materials in the reactor units of an
average-size nuclear power plant, which is usually known.We then
draw 30 samples from the uniform distribution to generate an
ensemble of (initial) emission rates. Fig. 2 shows the ensemble
alongside the actual rate (black bar).

2.3. State vector augmentation

We expand the state vector to include not only the usual state
variables of PMCH concentrations but also PMCH emission rates as
follows,

x ¼ ðc1; c2; / cm�n�k; Q1; Q2; / QhÞT2Rm�n�kþh (2)

where ci is the PMCH concentration at the i-th grid point,m, n and k
the horizontal and vertical dimensions of the assimilation system,
Qi the emission rate during the i-th assimilation step, and h the
number of discrete emission periods. The simulation is discretized
into 3-h time periods to better represent the temporal evolution of
the emission rate, which is assumed to be constant during each (3-
h) time period. The emission and data assimilation frequencies are
both 3-hourly, the same as the observation frequency. At the end of
each 3-h time period, an a priori emission rate for the next period is
added to the state vector, thereby increasing the dimension of the
state vector and resulting in a dynamically expanding state vector
over time. An obvious and defining advantage of our augmentation
approach is that the emission trajectory is tracked and preserved in
the state vector, thereby allowing the emission rate to be contin-
uously updated by the EnKF. Theoretically, the emission rate will
converge apace toward the actual value after the first few steps of
assimilation.

2.4. Simultaneous update of concentration and emission rate

We compute the a priori emission rate for the next time period
as the mean of the updated emission rate ensemble from the cur-
rent time period:

Qb
h ¼

XN
i¼1

Qa
h�1ði

��
N (3)

where the superscript a indicates the analysis results from the
assimilation, i the index in the ensemble, and N the ensemble size.
We then generate a new emission rate ensemble for the next 3-
h emission time period by adding random noise to the a priori es-
timate Qb

h following Tang et al. (2011),

Qf
hðiÞ ¼ Qb

h þ dQb
h ðiÞ; i ¼ 1;2;…;N (4)

where dQb
h ðiÞ is the random noise. We assume that the emission is

persistent within each 3-h time step, a reasonable assumption
justified by the relatively short time frame. Assuming that the
emission rate does not fluctuate dramatically over time, we then
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adopt a time-correlated red noise to simulate the temporal evolu-
tion of the emission rate perturbation (Hartmann, 2014):

dQb
h ðiÞ ¼ adQa

h�1ðiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
wh�1ðiÞs; i ¼ 1;2;…;N (5)

where dQa
h�1ðiÞ is the deviation of the i-th analysis emission rate

from the ensemble mean, a (between 0 and 1) the degree to which
the influence (“memory”) of the previous state is retained,wh�1ðiÞ a
random number following normal distribution N(0, 1), and s the
standard deviation calculated from the current analysis emission
rate ensemble Qa

h�1. We use here a ¼ 0.5 to provide reasonable
sensitivity to both constant and rapidly changing emissions. The
emission rate tends to converge to the actual value, and the stan-
dard deviation of the ensemble decreases. A small deviation
sometimes leads to “filter divergence” in EnKF (Ehrendorfer, 2007),
whereby the emission rates do not respond to the assimilation of
new observations anymore and the ensemble mean deviates from
the actual value. To avoid such divergence, we impose a minimum
standard deviation of 10% of the ensemble mean as follows,

s ¼ max
�
s
�
Qa
h�1

�
; 0:1� Qa

h�1

�
(6)

Ten percent is sufficiently large to instigate the correction of the
ensemble if the a priori value differs substantially from the actual
rate. Yet it does not contaminate the estimate because its rapid
dissipation.
3. Results and discussions

3.1. Assimilation quality

We first compare the analysis PMCH concentrations against the
observations used in the assimilations as a “sanity check”. Here we
use four statistical metrics to quantify the performance of the
assimilation: fractional bias (FB), normalized mean square error
(NMSE), fraction of the predictions within a factor three of obser-
vations (FAC3) and correlation coefficient (r), following
(Korsakissok and Mallet, 2009). FB and NMSE are defined as:

FB ¼
�
Cobs � Cassim

	
=
�
0:5

�
Cobs þ Cassim

		
(7)

NMSE ¼ ðCobs � CassimÞ2

�

CobsCassim

	
(8)

where Cobs is the observed PMCH concentration and Cassim is the
PMCH concentration from the EnKF data assimilation analysis. The
Fig. 3. Scatter plots of observed versus model forecasted surface PMCH concentration: (le
forecast with assimilation and with uncertain emissions. See text for details. Values are 3-h
same metrics are also applied to the model forecast without data
assimilation.

The EnKF scheme can effectively assimilate the observations.
Fig. 3 is a scatter plot of model simulated PMCH surface concen-
trations, with and without data assimilation, against the observa-
tions. Since the measurement resolution is 0.01 ng m�3, the model
results are rounded off to the nearest 0.01 ng m�3. We only include
the nonzero observations in the comparison. Relative to the ob-
servations, the forecast without assimilation shows a substantial
bias (FB ¼ �105%), a large error (NMSE ¼ 50.74), and a weak cor-
relation (r ¼ 0.64), with only 48% of the forecast PMCH concen-
trations within a factor of three of the observations, despite using
the actual emission rates. In contrast, the EnKF assimilation sub-
stantially reduces the bias (FB ¼ 29%) and error (NMSE ¼ 2.22) and
increases the correlation (r ¼ 0.83, p < 0.001), with 63% of the
analysis PMCH concentrations within a factor three of the
observations.

Fig. 4 shows the 3-h averaged PMCH surface concentrations
from the model forecast without assimilation (but with the actual
emission rates) and from the EnKF assimilation analysis (with un-
certain emission rates) during hours 45e47 (left column) and hours
69e71 (right column). There is a small yet appreciable performance
improvement from the assimilation analysis during the first time
period. For the latter time period, the assimilation analysis shows a
significant improvement. The concentrations are dramatically
overestimated by the model forecast without assimilation
(FB ¼ 114%, NMSE ¼ 11.66). The forecast and the observations
become anti-correlated (r ¼ �0.19). The EnKF assimilation, in
contrast, greatly reduces the bias (FB ¼ �10%), increases the cor-
relation between the analysis and observed PMCH (r ¼ 0.52), and
lowers the error (NMSE ¼ 0.96). The differing distributions of
model predicted and observed plumes indicate that meteorological
uncertainty is a significant part of the transport errors (Bei et al.,
2012; Liu et al., 2011). The model forecast without assimilation
deteriorates in accuracy with increasing forecast time because of
the accumulation of the transport errors. Contrastingly, the EnKF
assimilation effectively and efficiently ‘calibrates’ the transport
error.
3.2. Emission rate reconstruction

Fig. 5 (left panel) shows the actual, a priori and a posteriori PMCH
emission rates. The a priori rate is several times higher than the
actual rate during the initial four assimilation cycles (up to hour 11
since the initial release). This is directly because of the rather large
initial guess of a priori rate used at the start of the EnKF assimila-
tion. The assimilation effectively updates and adjusts the a priori
ft) model forecast with the actual emissions but without assimilation; (right) model
averages. Dashed lines are 1:3 (or 3:1) ratio lines.



Fig. 4. (Top and middle panels) Model forecasted surface PMCH concentrations during hours 45e47 (left panels) and 69e71 (right panels): (top panels) forecast with the actual
known emissions but without assimilation (“NoDA”); (middle panels) forecast with assimilation and unknown and uncertain emissions (“DA”). Observation (circles) are color-
coded. Different concentration scales are used for the two time periods here. (Bottom panels) scatter plots of model forecasted versus observed surface PMCH concentrations:
(left) during hours 45e47; (right) during hours 69e71. See text for details. Values are 3-h averages. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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emission rate (via Eq. (4)), which rapidly decreases and approaches
the actual rate. The ensemble a posteriori emission rates at hour 15
fall into the range 1.8e10.0 g s�1 (mean ¼ 5.9 g s�1,
median ¼ 6.4 g s�1), encompassing the actual rate. The emission
uncertainty is also reduced by five folds.

The a posteriori temporal evolution of the emission rate
retrieved at hour 90 (since the initial release) is shown (as bars) in
Fig. 5 (left panel). All available observations have been assimilated
by that time. The a posteriori rates are closer to the actual values
compared with the a priori rates. The EnKF assimilation captures
Fig. 5. (Left) The actual (solid circles), the a priori (open circles), and the a posteriori (shaded
indicates the standard deviation of the ensemble. Since the release only lasted for 50 min (fr
emission rate” is the averaged rate over the 3 h, which is 2.81 g s�1. (Right) The actual total P
(Fig. 1) after each data assimilation point, and the normalized a posteriori total mass by the
the overall temporal evolution of the emissions: large early on and
no emissions afterward. The a posteriori emission rates at hours
3e5 (3 h from 18:00 UTC to 21:00 UTC, October 23) and 12e14 (3 h
from 3:00 UTC to 6:00 UTC, October 24) are 16% and 25% higher
than the corresponding rates in the experiment. The retrieved
emission rate converges to 10�2 g s�1 after the first five assimilation
steps. The biases for the first, third and fourth periods are large. For
the first period (hours 1e2), the emission rate is overestimated
threefold. For the third (hours 6e8) and fourth (hours 9e11) pe-
riods, the emission rates are underestimated. The overestimated
bars) emission rates ethe latter is reconstructed 90 h after the initial release. Error bar
om 3:00 UTC to 3:50 UTC, October 24) during the fifth period (hours 12e14), its “actual
MCH mass released, the a posteriori total PMCH mass summed over the model domain
actual value.
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part of the first period approximately fills the gaps between actual
emission and estimation of the third and fourth periods. In the
model, extra amount of material has been released into atmosphere
due to the excessively large initial guess, so the model simulation
are generally overestimated. The EnKF scheme attributes the
overestimation of the model forecast to the errors of the initial
emission rate, so it reduces the emission rates to decrease the
surface concentration. But it cannot eliminate all the extra PMCH at
once. As a result, the remaining extra PMCH plume around the
source takes the place of succeeding emissions, and consequently
suppresses the estimated emissions for subsequent periods,
resulting in large bias.

The reconstructed total emission of PMCH is much more accu-
rate. The actual release is 340 kg in total. The EnKF assimilation is
able to recover 94% of the total emission, a substantial improve-
ment over the total emissions retrieved by Bocquet (2007) (85%)
and by Seibert (2001) (61%). The temporal evolution of the total
mass of PMCH summed over the computational domain is shown in
Fig. 5 (right panel). The emissions begin exiting the domain 70 h
after the initial release. The a posteriori total mass of PMCH is
normalized by the actual value (open squares in Fig. 5). Initially, the
total mass is overestimated by a factor of 5. It takes about 35 h for
the reconstructed total mass of PMCH to converge toward its actual
value.

3.3. Forecast improvements

Here we appraise the forecast skill of the updated EnKF scheme,
which assimilates the observations of PMCH surface concentration
during ETEX and estimates and updates the (otherwise unknown
and uncertain) emission rate of PMCH. Specifically, we compare
and contrast the EnKF forecast with the forecast that uses the actual
(known) emission rates of PMCH but does not assimilate any ob-
servations. Fig. 6 shows the time evolution of the correlation co-
efficient (r) and NMSE of the forecast PMCH concentrations versus
the observations. Initially (hours 0e5) NMSE is considerably larger
in the EnKF forecast than in the one without assimilation. That is
because of the rather large initial guess of PMCH emission rate used
in the assimilation. During hours 11e60, the two sets of NMSE
become increasingly comparable (within 60%) as the EnKF forecast
continuously updates the emission rate, effectively reduces the
associated uncertainties, and consequently improves the forecast.
From hour 60 onward, the forecast without assimilation
Fig. 6. Correlation coefficient (top) and normalized mean square error (bottom) be-
tween observed and forecasted (with and without assimilation) surface PMCH con-
centrations. Values are 3-h averages.
deteriorates in quality due to the accumulation of the transport
errors, as evidenced in the sharply increasing NMSE (from 4.06 to
24.86) and rapidly decreasing correlation coefficient (from 0.35
to �0.28). In contrast, the EnKF forecast performs considerably
better during hours 11e90 as evident in the relatively steady cor-
relation coefficient (~0.40 on average) and small NMSE (3.70 on
average, ~80% reduction relative to the initial values). These results
are consistent with those in Fig. 4. The EnKF forecast quality suffers
slightly around hour 80 because of the diminishing number of
observations. Overall the EnKF forecast dramatically outperforms
the forecast without assimilation.

We also conduct the forecast with data assimilation, and with
the actual emission rate to investigate the pure effectiveness of data
assimilation for meteorological data. The results are shown as
cross-dash line in Fig. 6. During the first 20 h, the forecast with data
assimilation and actual emission rate is better (~63% reduction in
NMSE and ~35% improvement in correlation coefficient on average)
than in the one with unknown emission rate. The differing per-
formance indicates that during the first 20 h, the unknown emis-
sion rate has a substantial influence on the surface concentration,
and the updated EnKF scheme simultaneously ‘calibrates’ the errors
both in the emission rate and meteorological data. From hour 20
onward, the EnKF forecasts with and without the actual emission
rate become comparable (within 19% in correlation coefficient and
20% in NMSE on average), which indicates that the influence of the
unknown emission rate has decreased and the EnKF schememainly
‘calibrates’ the error in the meteorological data.

The NMSE in the forecast without data assimilation decreases
from a high level early on, to a low level in the middle of the
experiment. The substantial error during the first 20 h is mainly
caused by the “false-diffusion” of the Eulerian approach used in our
study. In Eulerian models, emissions from major point sources are
usually assumed to mix immediately within a grid cell. The rapid
mixing will cause relatively large error in the vicinity of the source,
where plume does not expand to the size of the grid box
(Korsakissok and Mallet, 2010). As a result, the forecast of Eulerian
model without data assimilation has large errors during the first
20 h as shown in Fig. 6. The large overall NMSE (50.74) in Fig. 3 is
mainly caused by the poor performance during the fourth period,
when the NMSE amounts to about 60. The Lagrangian atmospheric
dispersion model in (Davakis et al., 2007) provides a better repre-
sentation of the near-source dispersion, and the overall value of
NMSE without any data assimilation during the first 33 h after the
release was about 15, which is much better than the overall NMSE
(50.74) in our study. Korsakissok and Mallet (2010) evaluated the
plume-in-grid method with ETEX I. The Eulerian model POLAIR 3D
in (Korsakissok and Mallet, 2010) gave a large error (NMSE ¼ 47.7)
at station F21, but it decreased to 8.5 when the Eulerian model was
coupling with a lagrangian sub-grid model in the near source area.
The “false-diffusion” problem is substantially alleviated as evident
in the small NMSE of the 3-h forecast with data assimilation and
actual emission rate during the first 20 h.

3.4. Sensitivity tests

The performance of the updated EnKF scheme depends on
several factors, such as the first-guess emissions and the ensemble
of the meteorological data. In order to investigate the influence of
these factors, sensitivity tests are conducted and summarized in
Table 1. The experiment discussed in the previous sections is
referred to as “Base-Test” hereafter.

The first sensitivity test ST01 is to investigate the influence of
the first-guess emissions. In the Base-Test, the initial emission rate
is set as uniformly distributed between 0 and 100 g s�1, and the
actual rate (7.98 g s�1) locates within the range. In ST01, the initial



Table 2
Reconstructed total mass and statistical metrics of the assimilation analysis in the
sensitivity tests. The retrieved percentages of the actual total mass are given in the
brackets.

Reconstructed total mass (kg) FB NMSE FAC3 r

Base-Test 319.60 (94%) 0.29 2.22 0.63 0.83
ST01 321.39 (94%) 0.41 2.94 0.61 0.80
ST02 415.68 (122%) 0.19 2.03 0.64 0.82
ST03 353.64 (105%) 0.28 2.38 0.61 0.81
ST04 193.07 (57%) 0.41 3.14 0.56 0.79
ST05 369.05 (109%) 0.26 2.11 0.63 0.84
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emission rate is set as uniformly distributed between 0 and 1 g s�1,
which is substantially underestimated (with a mean of 0.5 g s�1,
only 6.3% of the actual rate), and the actual rate is outside the range
of the first-guess. The main results are shown in Table 2. The
updated EnKF scheme also successfully retrieves 94% of the total
emission. Table 2 also shows the statistical metrics of the assimi-
lation analysis. The metrics are close to those in the Base-Test,
which shows the scheme successfully assimilates the observa-
tions. This result suggests that the performance of the updated
EnKF scheme is not sensitive to the first-guess emissions, and the
robustness is beneficial for practical applications.

In the Base-Test, We perturbwind to simulate the uncertainty in
the meteorological data. The second test ST02 is conducted to
evaluate the sensitivity of the data assimilation scheme to the
perturbation added into the wind field. In ST02, we use a different
kind of distribution, lognormal distribution (0, 0.5), to generate the
rescaling factors. The comparison of the two different distributions
is shown in Fig. 7. The rescaling factors only distribute between 0.5
and 1.5 in the Base-Test, but they distribute between 0 and 4 in
ST02. The broader distribution indicates larger uncertainties are
introduced in thewind fields. Themain results of ST02 are shown in
Table 2. It shows that the total mass is overestimated by 22%. The
bias is attributed to the large uncertainties in thewind fields, which
leads to substantial uncertainties in the horizontal distribution of
the PMCH plume. Some extra part of the plume cannot be effec-
tively eliminated by the data assimilation due to the sparse
observation network. As a result, the horizontal extent of the PMCH
plume is generally larger than that in the Base-Test, consequently
leading to the overestimation. However, considering the substantial
overestimation of the first-guess emission, the results are still
acceptable. The metrics show the observations have been effec-
tively assimilated. The results indicate the updated EnKF scheme is
moderately sensitive to the perturbation added into the wind field.

In the updated EnKF scheme, we adopt a time-correlated red
noise to simulate the temporal evolution of the emission rate
perturbation, and the parameter a is introduced in Eq. (5). ST03 is
conducted to investigate the influence of the parameter. a is set as
0.1 in the sensitivity test. The reconstructed total emission of PMCH
is slightly overestimated by 5%, and the metrics are also very close
to those in the Base-Test. The results suggest that the performance
of the data assimilation scheme is not sensitive to the new intro-
duced parameter.

The fourth sensitivity test ST04 is to evaluate the effect of the
meteorological uncertainty. The wind field is not perturbed, and
only the uncertainties of the vertical eddy diffusivity coefficients
are taken into account in the meteorological ensemble. The per-
formance substantially deteriorates as shown in Table 2. It only
retrieves 57% of the total released mass. The results are consistent
with the findings by Jiang et al. (2011) and Tang et al. (2013), and it
suggests that neglecting the uncertainties of the meteorological
data can lead to bias in the emission estimations. The results of
ST02 and ST04 indicate that the uncertainties in the meteorological
field exert a relatively strong influence on the performance of the
updated EnKF scheme.
Table 1
Sensitivity tests to investigate the sensitivity of the updated EnKF scheme to the
different factors.

Tests Sensitivity factors Test setup

ST01 First-guess emissions Uniformly distributed between 0 and 1 g s�1

ST02 Wind field rescaling factors Following lognormal distribution (0, 0.5)
ST03 Red noise parameter a Set as 0.1
ST04 Wind field uncertainties Removed
ST05 Number of the observations Remove 15 (9.26%) stations
The sensitivity test ST05 is to investigate the influence of the
number of the observations. We remove the observations at 15
stations (9.26% of the total stations, shown as red points in Fig. 8)
from the data assimilation dataset, so the measurements from
these stations will not be used in the data assimilation. The
removed stations are referred to as “validation sites” hereafter. The
reconstructed total emission of PMCH in ST05 is slightly over-
estimated by 9%, so the removal of the 15 stations only has limited
impact on the performance. We also conduct independent com-
parisons with the measurements at the validation sites. The bottom
panels of Fig. 8 are scatter plots of model simulated PMCH surface
concentrations, with and without data assimilation, against the
observations at the validation sites. The data assimilation scheme
substantially reduces the fractional bias (from�110% to 6%) and the
normalized mean square error (from 27.12 to 4.37). The fraction of
forecasts within a factor three of observations is also improved by
7%. The correlation coefficient is slightly decreased by 0.01. In
general, the updated EnKF scheme improves the overall forecast
quality at the validation sites.

4. Summary and conclusions

We employed an Ensemble Kalman filter (EnKF) with the
POLAIR 3D chemical transport model driven by WRF meteorolog-
ical data to simultaneously estimate the emissions and to improve
the dispersion forecast of Perfluoromethylcyclohexane (PMCH), a
substitute tracer for radioactive materials during the European
Tracer Experiment. We augmented the EnKF state vector (of con-
centrations) to include emission rates. The augmentation thus
enabled at once the continuous optimization of PMCH emission
rate including its temporal variation and the improved forecast of
the downwind dispersion of PMCH. Meteorological uncertainty
was simulated by perturbing the wind fields from WRF. The
augmented EnKF, coupled with the WRF-POLAIR models, was then
applied to assimilate time-averaged surface PMCH concentrations
every 3 h.

The assimilation/inversion system initially overestimated the
emission rate “three-fold” because of the excessively large initial
Fig. 7. Comparison of the two different probability density functions for wind rescaling
factors: uniform distribution in the Base-Test, and lognormal distribution in ST02.



Fig. 8. (Top panel) Locations of the validation sites (red points). (Bottom panels) scatter plots of model forecasted versus observed surface PMCH concentrations at the validation
sites: (left) forecast without assimilation; (right) forecast with assimilation. See text for details. Values are 3-h averages. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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guess but rapidly converged toward the actual rates. The system
retrieved the total emissions of PMCH remarkably well, recovering
~94% of the actual total PMCH release, an improvement to previous
studies. The influence of the overestimated initial emission rate on
subsequent emission estimates and forecasts tapered rapidly dur-
ing the first several hours. The assimilation/inversion system,
initialized with unknown hence largely uncertain PMCH emission
rates, significantly outperformed the free-running WRF-POLAIR
models (with the actual, known PMCH emission rates) in predicting
downwind surface PMCH concentrations. In particular, the system
captured the shift of the PMCH plume from Northern to Eastern
Europe toward the later part of the experiment. The sensitivity tests
suggest that the updated EnKF scheme is not sensitive to the first-
guess emissions and the parameter a introduced in the time-
correlated red noise. But the uncertainties in the meteorological
field exert a relatively strong influence on the performance.

The updated EnKF scheme is presently applicable for gaseous
radionuclides, e.g., noble gas Xenon-133 andgaseous iodine. Ongoing
research includes extending the scheme to particulate radionuclides
(e.g., Cesium-137 and particulate iodine) and to other events where
near-real-time emission estimates and forecasts are critical. The
extended scheme can be validated with the data from the Interna-
tional Global Atmospheric Chemistry (IGAC) project, such as the
Aerosol Characterization Experiments (ACEs) (Bates et al., 1998).
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