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• We integrate the iterative EnKF method into the POLYPHEMUS platform.
• We thoroughly evaluate the data assimilation system against the Kincaid dataset.
• The data assimilation system substantially improves the model predictions.
• More than 60% of the retrieved emissions are within a factor two of actual values.
• The results reveal that the boundary layer height is the key influential factor.
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a b s t r a c t

Information about atmospheric dispersion of radionuclides is vitally important for planning effective
countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal
resolutions, but they are not accurate enough due to the uncertain source term and the errors in mete-
orological data. Environmental measurements are more reliable, but they are scarce and unable to give
forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation
scheme is used to combine model results and environmental measurements. The system is thoroughly
validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are
assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in
the emission rate and wind data, thereby significantly improving the model results (>80% reduction of
the normalized mean square error, r = 0.71). Sensitivity tests are conducted to investigate the influence
of meteorological parameters. The results indicate that the system is sensitive to boundary layer height.
When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed
emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights
derived from the on-site observations are used.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

China is experiencing a rapid expansion of its nuclear power
industry. However, the Fukushima accident reminds us that we
must be prepared for such devastating nuclear power plant (NPP)
accidents and any other accidents where hazardous material is
released into the atmosphere. A reliable assessment of atmospheric
dispersion of radionuclides is vitally important for population shel-
tering and evacuation planning during NPP accidents [1–3]. Results
of dispersion models [4] may have high spatial and temporal reso-
lutions, but they are not accurate enough due to the insufficient

∗ Corresponding author. Tel.: +86 10 62792856; fax: +86 10 62792863.
E-mail address: hy-yuan@outlook.com (H.Y. Yuan).

information of source term [5,6] and the large uncertainties in
meteorological data [7–9], especially in the critical early stages.
Environmental measurements are more reliable, but they are scarce
and unable to give information about the future situation. As a
result, the substantial uncertainties in radioactive pollution distri-
bution in the atmosphere significantly hinder the decision makers
from planning accurate countermeasures.

The combination of model results and environmental mea-
surements can help improve the accuracy of model results and
reconstruct the emissions. Inverse modeling and data assimilation
(DA) are two main combination methods. Inverse modeling mainly
aims at the reconstruction of model parameters. Data assimila-
tion method can sequentially correct the errors of model results
and retrieve the model parameters. DA method is used in this
study. Data assimilation has been widely used in numerical weather
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prediction (NWP) over the past two decades [10]. The DA method
has been introduced into the nuclear emergency response system
during the past decade [11–16]. In the real time on-line decision
support system (RODOS) [17] for European off-site nuclear emer-
gency management, Kalman filter method [18] has been used to
improve predictions of Gaussian plume model under quasi-steady
state [11–13], and efforts [14–16] were subsequently made to
reconstruct source terms. The sequential assimilation method of
ensemble Kalman filter (EnKF) [19] is a powerful alternative for
nuclear power plant emergency management. It has such advan-
tages as efficient on-line calibration, relatively straightforward
implementation and superior scalability for parallel computing.
Furthermore, EnKF can simultaneously account for the various
uncertainties in both emissions and meteorological data. Recently,
Zheng et al. [20–22] has applied the Monte Carlo dispersion model
combined with EnKF to reconstruct the source release rate for short
range dispersion. However, the performance of EnKF usually deteri-
orates due to the nonlinear observational model, which relates the
state variables (radioactive contents and positions of each puff) to
the observations (concentrations). The linear update in EnKF may
lead to inaccurate estimates where information in measurements
is not utilized maximally. It takes several hours for the DA method
to minimize the uncertainties of a priori parameters and converge
to the actual values (e.g., in [20]). Recently, Lorentzen and Naevdal
[23] have introduced an iterative extension to the ensemble Kalman
filter in the field of automatic control. Iterations are introduced to
improve the estimates in the cases where the observation model
is not linear. The new iterative EnKF method has been successfully
applied in the data assimilation system for NPP accidents [24]. The
results of twin experiments in our previous study indicate that the
proposed iterative EnKF scheme effectively calibrates the errors in
emission rate, plume rise height, wind speed and wind direction,
and time delay of the EnKF is substantially alleviated. However,
the twin experiments only theoretically assess the algorithmical
capabilities and improvements of the iterative EnKF method, and
it can be interpreted as optimistic since the further complications
of errors in real-life scenario are ignored. The proposed methods
should be further evaluated using experimental data. And the mete-
orological input data can be provided to models by detailed on-site
observations if available. But these observations may not be fully
available during NPP accidents, so the data from numerical weather
prediction (NWP) is used as substitutes. The influences of NWP data
should also be assessed.

The objective of this study is to thoroughly evaluate our pro-
posed iterative EnKF data assimilation scheme in [24] with the
data from Kincaid tracer experiment [25], which involves highly
buoyant plumes. The errors in the horizontal wind will be cor-
rected and the emission rates will be reconstructed using the
iterative EnKF method. Only the measured ground level tracer (SF6)
concentrations are assimilated by the system. The influences of
input meteorological data on the data assimilation performance
are also investigated, by comparison of the results driven by both
the weather research and forecasting (WRF) predicted and on-site
observed meteorological data, as suggested in [26]. We also try to
ascertain the most influential meteorological parameter in deter-
mining the sensitivity and accuracy of the data assimilation system,
and to provide suggestions for the practical implication of this
method.

2. Material and methods

2.1. Kincaid experiments and observations

The Kincaid field experiment was performed as part of the
EPRI Plume Model Validation and Development Project [25,27]. A

Fig. 1. The computational domain, SF6 release point (black triangle), and surface
measurement network of SF6 concentration (red dots, 162 stations). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

comprehensive experimental campaign was conducted at the Kin-
caid power plant (39.59◦N, 89.49◦W), Illinois, USA, in 1980 and
1981. The power plant was surrounded by flat farmland with some
lakes, as shown in Fig. 1. During the experiment, SF6 was released
from the 187 m high plant stack of 9 m diameter. One-hour aver-
aged ground level concentrations were measured. The data used
for the following simulations is given with the model validation
kit (http://www.harmo.org/kit/). In this study, the data from the
experiment conducted on July 13, 1980, between 9:00 and 17:00
GMT-6, is used. The actual mean emission rate in the experiment
is 13.36 g s−1, with a standard deviation of 1.05 g s−1. The layout
of monitoring network is shown in Fig. 1. There are 162 monitors,
ranging between 0.5 km and 15 km from the source. The experi-
ment has 1195 effective surface concentration observations. The
observation errors are set as 10% of the observed values.

2.2. Dispersion model description

The state and observation of an atmospheric dispersion system
can be expressed as

xk = M(xk−1) + �, x, � ∈ Rn (1)

y0
k = H(xk) + �, y0, � ∈ Rm (2)

where x is the state vector of the dynamic system, n is the
length of the state vector, and the subscript k or k−1 represents
the time step of data assimilation. M(x) is the dispersion model, � is
the model error, y0 is the observation vector, m is the number of the
observations, H(x) is observation model, and � is the measurement
error. The dispersion model is Lagrangian puff-model, the same as
in [24]. A continuous release is modeled by the release of a discrete
set of ellipsoidal clouds with Gaussian density distribution called
“puffs”. Npuff indicates the total number of the released puffs. Each
of the puffs carries away some content of hazardous material (Q),
and the central position of the puff can be expressed as (x, y, z).
In this study, the content Q and horizontal position (x, y) of each
puff comprise the state vector of the Lagrangian puff-model, so the
length of the state vector is n = 3 Npuff. The heights of puffs were
also included in the state vector in [24], but the twin experiments
have shown that the reconstructed emission rates and plume rise
heights are simultaneously underestimated or overestimated. It is
due to the error compensating effect of the two parameters: under-
estimated release rate reduces the ground level concentration, but
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Table 1
Experiments to evaluate the performance of the iterative EnKF data assimilation scheme.

Experiment name Plume rise/dispersion
parameterization

Meteorological
data

Whether with DA and source term
estimation

Source term A priori emission
rate (g s−1)

WRF-NoDA Concawe model/similarity
theory

WRF forecast No Actual /

WRF-DA WRF forecast Yes Uncertain 10−5

Obs-NoDA Measurement No Actual /
Obs-DA Measurement Yes Uncertain 10−5

the lower rise height increases it, and vice versa. The two differ-
ent errors compensate each other, and different combinations of
these parameters give similar ground level concentration. It will
be difficult for EnKF to identify which one is the optimal solution
[20]. The problem becomes more significant when using experi-
mental data. In the following data assimilation experiments, since
the a priori emission is assumed to be underestimated, the plume
rise height always decreases and converges to the height of the
source (189 m) to make the predicted ground concentration higher
and closer to the observations. The reconstructed emission rates
are thereby underestimated due to the error compensating effect.
The heights and emission rates are not effectively simultaneously
corrected. Fortunately, the plume rise height can also be estimated
based on the temperature and velocity of the released plume, which
can be measured using remote, non-contact measuring technolo-
gies, e.g., infrared technology. As a result, in this study only the
errors in the horizontal wind are corrected and the emission rates
are reconstructed. The measurements are the ground level volu-
metric activity concentrations, and the observation model H( x) is
nonlinear.

In this study, the dispersion simulations of SF6 are conducted
using the Lagrangian puff model [28] of the POLYPHEMUS plat-
form [29]. The Lagrangian puff module has been updated to make it
continuously driven by the spatially and temporally evolving mete-
orological data, which is updated every 10 min. It is assumed that
the meteorological data temporally remains constant during this
short time period. The time step between two successive puffs is
10 s. The concentration observations are assimilated into the model
every hour during the experiment. As shown in Table 1, four experi-
ments were conducted to evaluate the performance of the iterative
EnKF scheme, and the influences of different meteorological data.
The a priori emission rates in our DA runs are all set as 10−5 g s−1.
The Concawe model [30] is adopted as the plume rise param-
eterization scheme, and similarity theory [31] as the dispersion
parameterization scheme. The dispersion system works offline, and
it is not coupled with the meteorological model.

2.3. Meteorological data

In this study, both the meteorological data predicted by the
weather research and forecasting (WRF, version 3.1) [32], and the
on-site observed data are used to investigate the influences of the
different meteorological data.

(1) WRF forecasts
Four-level nested computational domains (Domain 0 ∼ 3) are

used, as shown in Fig. 2. The main objective is to obtain meteoro-
logical predictions with a spatial resolution of approximately 1 km
in the area around the Kincaid power plant, which is in the inner-
most nested domain. The computational domain shown in Fig. 1 is
located in Domain 3. The configurations of the WRF prediction are
displayed in Table 2. WRF simulation is initialized with NCEP/NCAR
Reanalysis 1 data [33]. The WRF simulation starts at 18:00 GMT-
6, July 12, which is 15 h before the initial release of SF6, and lasts
through to 00:00 GMT-6, July 14. WRF is set as parallel mode. The
WRF simulation was conducted on our cluster server, which has
Intel Xeon E5630 2.53 GHz processors (4–core), 16 nodes (8 cores

per node), and 64 GB memory. Two nodes (16 cores) were used,
and it took about 2 h to complete the calculation (meteorological
data for 30 h). The dispersion simulations start at the initial release
time and last through to 17:00 GMT-6, July 13. Two simulations
are conducted—one assimilates SF6 observations via iterative EnKF
with an unknown and uncertain initial SF6 emission rate (WRF-DA
in Table 1), whereas the other is free running (i.e., without assimila-
tion) but uses the actual (known) SF6 emission rates (WRF-NoDA).

(2) Meteorological measurements
During the experiment, most meteorological measures were

hourly averaged, and taken from a “Central Site” located around
650 m east of the Kincaid plant. Observations of wind speed and
wind direction are available at 10, 30, 50 and 100 m, measured
by the 100 m and 10 m meteorological towers. Following the pre-
processing methods in [26], the horizontal velocity components
under 100 m are obtained from the measurements or interpola-
tions, and they are fixed at 100 m values at higher levels. The vertical
velocity component is assumed to be zero. Solar radiation data is
also available, measured by solar and terrestrial radiation equip-
ment. The Monin–Obukhov length (L), the friction velocity (u∗),
and the boundary layer depth (h) derived by Earth Tech using pre-
processing methods detailed in [25] are adopted.

(3) Meteorological data comparisons
In Fig. 3, the WRF predicted wind speed and wind direction

are compared with the measurements. The WRF predictions are
linearly interpolated at the “Central Site”, where measurements
were taken. The solid lines are the temporal trajectory of the pre-
dictions. The predictions are averaged in each hour to compare
with the hourly averaged measurements. The error bar is the stan-
dard deviation of the predictions in each hour. The predicted wind
speed captures the overall temporal evolution of the observations:
high early on and then relatively steady at a lower speed. The
mean absolute deviation between the predictions and observa-
tions is 0.27 m s−1 (maximum: 0.57 m s−1). The deviations between
the predicted wind directions and the observations are larger. The
mean absolute deviation is 19.51◦, and the maximum deviation
amounts to 47 degrees during 16:00–17:00 GMT-6. The large devia-
tion can be caused by the low quality of the initial condition of WRF,
namely the reanalysis data. In 1980s, the meteorological observa-
tions were limited, which would lead to the relatively low quality of
the reanalysis data for that period. The large deviations of the wind

Table 2
Configurations and physical parameterizations of the WRF model.

Configuration
parameters

Domain

0 1 2 3

Spatial resolution 27 km 9 km 3 km 1 km
Number of grid points 181 × 161 91 × 91 91 × 91 91 × 91
Number of vertical

levels
28 28 28 28

Numerical time-step 120 s 60 s 30 s 15 s
Planetary boundary

layer
YSU PBL scheme [34]

Microphysics WRF Single Moment 3
scheme 35]



332 X.L. Zhang et al. / Journal of Hazardous Materials 297 (2015) 329–339

Fig. 2. WRF four-level nested computational domains. The yellow dashed lines are the boundaries of Domain 0 ∼2. The red solid lines are the boundaries of innermost
Domain 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

direction will cause distinctly different ground level distributions
of SF6.

2.4. Iterative ensemble Kalman filter

Ensemble Kalman filter (EnKF) [19] is a sequential data assimi-
lation method, which is used recursively to produce a statistically
optimal estimate of the underlying system state by merging the
model predictions and the current observations. Different from the
original Kalman filter, which is only applicable to linear system
model, the EnKF initializes an ensemble of forecast models, each of
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Fig. 3. Comparisons between the WRF predictions and on-site observations: (upper
panel) comparison of wind speed and (bottom panel) comparison of wind direction.

which represents a possible state of the system and the error statis-
tics are predicted using the collection of model states. The ensemble
state vectors constitute the state matrix:

X = (x1x2...xN) ∈ Rn×N (3)

where the subscript i (i = 1, 2, ..., N) denotes the individual state
vector of the ensemble and N denotes the size of the ensemble.
EnKF is also applicable to nonlinear system models. The ensemble
predictions constitute the prediction matrix, defined as

Yf =
(

H(xf
1)H(xf

2)...H(xf
N)

)
∈ Rm×N (4)

Ȳ f = Yf 1N (5)

where 1N is N × N matrix, with each element equaling to 1/N, and
Ȳ f is the mean ensemble measurement prediction matrix. For the
nonlinear observation operators, the state vector can be extended
to include both the original vector x and the observation predic-
tions H( x) as in [36], thus the nonlinear problem is reduced to a
linear one. But the analysis result is only an approximation to the
optimal estimate of the state, because the valid states of system
only occupy a submanifold of augmented state space instead of the
whole space [36], causing the performance of EnKF to deteriorate.
It is found that in [20], when nonlinear parameters (wind direction
and turbulence intensity) are included in the state vector, it takes
several data assimilation steps to converge to the true values. The
time delay between a priori and the converged values can be as
large as 5 h.

In the original EnKF, the analysis step is conducted only once,
which is insufficient for the nonlinear observation model. The linear
update in EnKF may lead to inaccurate estimates where information
in measurements is not utilized maximally. In the modified algo-
rithm, an iteration cycle is introduced, which makes the posterior
state gradually converge to the actual condition. In the iterative
EnKF, there are three main modifications: convergence criterion,
increment filter, and resample. The details about the iterative EnKF
data assimilation method can be found in [24]. The iterative EnKF
scheme has been integrated into the POLYPHEMUS platform [29].
The configurations of the iterative EnKF are the same as those in
[24]. The data assimilation system is set as serial mode. All the dis-
persion simulations and data assimilation were conducted on the
personal computer, which has Intel i5-3230 M 2.60 GHz processor,
and 6 GB memory. It took about 20 min for the 8 h (from 9:00 to



X.L. Zhang et al. / Journal of Hazardous Materials 297 (2015) 329–339 333

1086420-2
-2

0

2

4

6

8

10

 Without data assimilation
 Data assimilation

Observations ( g/m3)

M
od

el
 R

es
ul

ts
 (

g/
m

3 )
FB:        -1.40  -0.12
NMSE: 27.54   3.33
FAC2:    0.48   0.64
r:            0.18   0.71

Data points: 1195

NoDA DAWRF-

1086420-2
-2

0

2

4

6

8

10

Observations ( g/m3)

M
od

el
 R

es
ul

ts
 (

g/
m

3 )

FB:        -1.19  -0.46
NMSE: 14.72   2.79
FAC2:    0.51   0.54
r:            0.20   0.71

Data points: 1195

NoDA DAObs-

µ

µ µ

µ

Fig. 4. Scatter plots of observed versus model forecasted surface SF6 concentration: (left) simulations driven by the WRF predicted meteorological data (WRF-NoDA and
WRF-DA); (right) simulations driven by the observed meteorological data (Obs-NoDA and Obs-DA).

Fig. 5. Forecasts and data assimilation analysis driven by the WRF predicted meteorological data: (First column) Model forecasts with the actual known emissions but without
data assimilation (WRF-NoDA); (Second column) data assimilation analysis with unknown and uncertain emissions (WRF-DA); (Third column) scatter plots of model results
versus observed surface SF6 concentrations.
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Fig. 6. Forecasts and data assimilation analysis driven by the on-site observed meteorological data: (First column) Model forecasts with the actual known emissions but
without data assimilation (Obs-NoDA); (Second column) data assimilation analysis with unknown and uncertain emissions (Obs-DA); (Third column) scatter plots of model
results versus observed surface SF6 concentrations.

11:00) data assimilation runs (WRF-DA or Obs-DA), and it only took
less than 3 min for each time of data assimilation on average.

3. Results and discussions

3.1. Assimilation quality

Four statistical metrics are used to quantify the performance of
the data assimilation: fractional bias (FB), normalized mean square
error (NMSE), fraction of the predictions within a factor two of
observations (FAC2) and correlation coefficient (r), following [28].
FB and NMSE are defined as:

FB =
(

¯Cobs − ¯Cassim

)
/
(

0.5( ¯Cobs + ¯Cassim)
)

(6)

NMSE = ¯(Cobs − Cassim)2/( ¯Cobs ¯Cassim) (7)

where Cobs is the concentration observations and Cassim is the
analysis results after data assimilation. The same metrics are also

applied to quantify the performance of the model forecast without
data assimilation.

The iterative EnKF scheme can effectively assimilate the obser-
vations. Fig. 4 is a scatter plot of model simulated SF6 surface
concentrations, with and without data assimilation, against the
observations. The left panel shows the results of the simulations
driven by the WRF predictions (WRF-NoDA and WRF-DA). Despite
using the actual emission rates, the results in WRF-NoDA show
a substantial bias (FB = −140%), a large error (NMSE = 27.54), and
a weak correlation (r = 0.18), with only 48% of the forecast SF6
concentrations within a factor of two of the observations. But in
WRF-DA, the iterative EnKF data assimilation scheme substantially
reduces the bias (FB = −12%) and error (NMSE = 3.33) and increases
the correlation (r = 0.71), with 64% of the analysis SF6 concentra-
tions within a factor two of the observations. The model results
in the right panel are from the simulations driven by the mete-
orological observations (Obs-NoDA and Obs-DA). They also show
that the data assimilation scheme effectively improves the model
results.
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The results in Obs-NoDA are better than those in WRF-NoDA:
the overestimation of the model forecast is slightly alleviated
(FB = −119%), the errors are substantially reduced (NMSE = 14.72),
the correlation becomes a little stronger (r = 0.20), and more fore-
cast concentrations locate within a factor two of the observations
(FAC2 = 0.51). The different forecast performance is caused by the
substantial differences between the predicted and observed wind
speed and direction as shown in Fig. 3. However, there are still
significant biases between the observed and forecast SF6 con-
centrations, despite using the observed meteorological data. One
plausible reason is that the measurements of wind are one-hour
averaged, but the actual wind constantly varied during the mea-
surement period, introducing representativeness errors. The EnKF
assimilation also substantially improves the performance, as the
statistical metrics indicate.

3.2. Corrections of errors in wind

Fig. 5 shows the SF6 surface concentrations in WRF-NoDA (first
column) and in WRF-DA (second column) during three differ-
ent periods. There are significant performance improvements in
WRF-DA during all the three time periods. The locations or direc-
tions of the SF6 plume are substantially corrected by the iterative
EnKF scheme. During the first time period, the forecast plume in
WRF-NoDA locates to the west of the source, whereas many high
concentrations are observed in the southwest direction relative to
the source. It suggests that substantial errors exist in the predicted
wind direction. In WRF-DA, the plume is “turned” anticlockwise.
The high concentration area of the plume is in good agreement
with the observations. The substantial performance improvement
can be quantitatively identified from the statistical metrics shown
in the third column. During the first time period, the concentra-
tions are dramatically overestimated in WRF-NoDA (FB = −114%,
NMSE = 18.70). The forecast and the observations become anti-
correlated (r = −0.02). WRF-DA, in contrast, greatly reduces the bias
(FB = −21%), increases the correlation between the analysis and
observed SF6 (r = 0.79), and lowers the error (NMSE = 2.91). The
differing distributions of model predicted and observed plumes
indicate that meteorological errors are a significant part of the
transport errors. The situations of the other two periods are similar
to that during the first period. The results suggest that the iter-
ative EnKF assimilation effectively and efficiently ‘calibrates’ the
transport error caused by the errors in the predicted wind data.

Fig. 6 shows the same results from the simulations driven by
the observed meteorological data. Generally speaking, the fore-
cast in Obs-NoDA outweighs its counterpart in Fig. 5, which is
consistent with the results in Fig. 4. After data assimilation, the
positions of the SF6 plume become close to those in Fig. 5, but the
plumes are slightly wider in the simulation driven by observed
meteorological data due to the larger puff standard deviations,
which are calculated according to the Monin–Obukhov similarity
theory. Fig. 7 shows the time evolution of the correlation coef-
ficient (r) and NMSE of the forecast SF6 concentrations versus
the observations. For the forecasts without DA, the correlation
coefficients in both WRF-NoDA and Obs-NoDA are signifi-
cantly small (mean = 0.10, maximum = 0.42, minimum = −0.18 in
WRF-NoDA, and mean = 0.17, maximum = 0.41, minimum = 0 in
Obs-NoDA). The correlation coefficients in Obs-NoDA are higher
than those in WRF-NoDA due to the observed meteorological data.
But the fluctuations of the correlation coefficients (r) in both of
the forecasts are substantially large. The standard deviations of
r are respectively 0.24 in WRF-NoDA and 0.17 in Obs-NoDA. In
contrast, after DA the data assimilation analysis performs con-
siderably better during 9:00–17:00 as evident in the relatively
steady large correlation coefficient (mean = 0.69, maximum = 0.79,
minimum = 0.60 in WRF-DA, and mean = 0.69, maximum = 0.77,
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minimum = 0.47 in Obs-DA). The statistical metrics NMSE also
shows similar results. Despite using different meteorological data,
after DA the two sets of r and NMSE in WRF-DA and Obs-DA
become comparable (within 10% on average in r, and within 18% on
average in NMSE). The results indicate that the iterative EnKF
scheme effectively calibrate the errors in the wind data.

3.3. Emission rate reconstruction

It takes about three hours for the puff to leave the computational
area, so the emission estimations can be updated three times on
average. Here, the mean and standard deviation (error bar) of the
multiple updates of the emission are shown. Fig. 8 shows the actual
and a posteriori SF6 emission rates. The left panel shows the results
in WRF-DA, and the right panel shows the results in Obs-DA. The
a posteriori emission rates are underestimated in WRF-DA. During
the first five hours (from 9:00 to 14:00), the estimations are still
within a factor two of the actual emissions, but during the last three
hours (from 14:00 to 17:00), the estimations sharply drop out of the
factor three. In contrast, the a posteriori SF6 emission rates in Obs-
DA are steady within a factor two of the actual emissions, except the
last hour, when the estimations are underestimated. The underes-
timation is due to the insufficient number of observations, because
only the observations from 17:00 can be used to estimate the emis-
sions during the last hour (from 16:00 to 17:00). FAC2, NMSE and
FB are calculated between the reconstructed and the actual emis-
sion rates to quantify the performance of the reconstruction. The
correlation coefficient between the reconstructed and the actual
emission rates is not applied, because the actual emission is almost
constant during the experiment. The three statistical metrics are
shown in Fig. 9. It shows that 62.5% of the estimation are within
a factor two of the actual emission rates in WRF-DA, and the por-
tion is as high as 87.5% in Obs-DA. The normalized mean square
error is also larger in WRF-DA (NMSE = 0.73) than that in Obs-DA
(NMSE = 0.13). The fractional bias shown in the lower panel reflects
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Fig. 8. The comparisons between the actual and the reconstructed emission rates: (left) results in WRF-DA, (right) results in Obs-DA. The red dashed and blue dot-dashed
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referred to the web version of this article.)

that the emissions are substantially underestimated in WRF-DA
(FB = 0.70), but the estimations in Obs-DA are in good agreement
with the actual emissions as evident in the significantly small frac-
tional bias (FB = 0.05). WRF-Obs-DA is a new experiment, with the
same configurations as WRF-DA, except that the WRF predicted
boundary layer height is replaced by the height derived from the
onsite meteorological measurements. The new experiment will be
discussed in the next section.

3.4. Influence of boundary layer height

It is apparent that the different reconstructed emissions are
caused by the meteorological data, which is the only difference
between WRF-DA and Obs-DA. The DA scheme can effectively ‘cal-
ibrate’ the errors in the wind data as discussed in Section 3.2, hence
the key influential factors must be other meteorological parame-
ters. It is found that the height of the boundary layer exerts strong
influence on the performance. In this study, the boundary layer
depths (h) derived from the onsite meteorological measurements
are adopted. The parameter is referred to as “derived data” here-
after. The differences of the WRF predicted and derived boundary
layer heights are shown in Fig. 10. It shows that the WRF predicted
boundary heights are substantially smaller than the derived data.
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between actual and reconstructed emission rates in WRF-DA (driven by WRF
predicted data), Obs-DA (driven by WRF meteorological observations) and WRF-
Obs-DA. (the same as WRF-DA, but use the observed boundary layer height).

The predictions are underestimated by 32.3% on average relative to
the derived data. The largest deviations appear during the last three
hours (41.5% underestimation on average). During the first hour
(from 9:00 to 10:00), the predicted boundary layer heights are com-
parable with the derived data (within 8.5%). As a result, during that
period the estimated emissions in WRF-DA are also in good agree-
ment with the actual emission. After 14:00, the predicted heights
start to decrease, but the derived data begins to nearly level off.
The sharp decrease of the emission estimation in WRF-DA appears
during the last three hours (from 14:00 to 17:00), as shown in the
left panel of Fig. 8. Strong correlation between the deviations of the
estimated emission and the deviations of predicted boundary layer
height can be observed. The height of the boundary layer indicates
the volume of the air that the released material can be mixed into.
A lower height indicates that the released SF6 can only be mixed
into less volume of air, so the concentration after fully mixing tends
to be higher. If the WRF predicted boundary layer height is lower
than the “actual” value, only a reduced amount of SF6 is required
to be released in the simulation (WRF-DA) to achieve comparable
concentrations with the observations. As a result, the reconstructed
emissions in WRF-DA are substantially underestimated.

In order to confirm our hypothesis, a new experiment WRF-
Obs-DA is designed. The new experiment is the same as WRF-DA,
except that the WRF predicted boundary layer height is replaced by
the height derived from the onsite meteorological measurements.
Fig. 11 shows the a posteriori SF6 emission rates in WRF-Obs-
DA. The results are much better than those in WRF-DA. Fig. 9
also shows the three statistical metrics in WRF-Obs-DA. Compared
with those in WRF-DA, the results in WRF-Obs-DA are drastically
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Fig. 11. Reconstructed emission rates in WRF-Obs-DA (the same as WRF-DA, except
using the on-site derived boundary layer height as substitute).

improved, with a higher FAC2 (87.5%), a much smaller NMSE (0.14)
and FB (0.03). The performance in WRF-Obs-DA becomes signifi-
cantly close to that in Obs-DA. Since the only difference between
WRF-DA and WRF-Obs-DA is the boundary layer height, it confirms
that the boundary layer height is the key influential factor in the
proposed EnKF data assimilation scheme.

3.5. Comparison between EnKF and iterative EnKF

The experiments WRF-Obs-DA and Obs-DA are also conducted
by the original EnKF to clearly show the performance improve-
ment of the iterative EnKF. The new experiments are respectively
referred to as WRF-Obs-DA ORIG and Obs-DA ORIG. Fig. 12 shows
the reconstructed emission rates using the original EnKF. In both
of the experiments, at the initial stage of data assimilation, it takes
2 h for the original EnKF method to minimize the uncertainties of
a priori parameters and converge to the actual values. In contrast,
the a posteriori emission rates almost converge to the actual values
during the first hour in WRF-Obs-DA and Obs-DA (seen in the right
panel of Figs. 8 and 11), so the time delay of the EnKF is alleviated
by the iterative EnKF.

The performance of the original EnKF scheme is also sensitive to
the meteorological data. In WRF-Obs-DA ORIG, the reconstructed
emission rates deteriorate after 12:00 due to the low quality of the
wind data predicted by WRF, but the results are much better in Obs-
DA ORIG due to the usage of the more accurate on-site observed
meteorological data. As mentioned in Section 1, when the obser-
vational model is nonlinear, the information in measurements is
not utilized maximally by the original EnKF, so the performance
usually deteriorates. The different performance indicates that the

original EnKF method fails to effectively correct the substantial
errors in the wind data of the WRF forecasts, and the errors are
reflected in the reconstructed emission rates. In contrast, the iter-
ative EnKF is more robust and reasonably insensitive to the errors
of the wind data, as evidence in the results of Obs-DA and WRF-
Obs-DA. Despite using different meteorological data, the iterative
EnKF scheme gives consistently high quality performance in both
Obs-DA and WRF-Obs-DA (seen in the right panel of Figs. 8 and 11).

The three statistical metrics of the new experiments are shown
in Fig. 13. The metrics clearly show that the emission rates recon-
structed by the iterative EnKF scheme are much better than those
reconstructed by the original EnKF: in Obs-DA and Obs-DA ORIG,
the FAC2 is improved by about 30%, NMSE and FB are, respec-
tively, reduced by about 60% and 90% by the iterative EnKF scheme;
in WRF-Obs-DA and WRF-Obs-DA ORIG, the FAC2 is substantially
increased by 180%, NMSE and FB are significantly cut down by about
85% and 95% by the iterative EnKF scheme.

4. Limitations and suggestions

The iterative EnKF scheme tries to simultaneously estimate the
emission and improve the forecast. There is strong relation between
the errors in the concentration distribution and in the wind data,
so the DA scheme effectively calibrates the errors in the wind data
only, which are based on the ground level concentration measure-
ments. However it is difficult, or even impossible, to calibrate the
errors in other meteorological data, such as boundary layer height,
if only the observations of the ground concentrations are assim-
ilated. The iterative EnKF scheme can not correctly identify the
errors in the boundary layer height due to the error compensation
effect, which means that similar ground concentration distribu-
tions can be produced under different boundary layer heights by
altering the amount of the released materials. The evidence is that
in WRF-DA and Obs-DA, despite the distinctly different boundary
layer heights, the analysis results of ground concentrations are very
close to each other (within 10% in r, and within 18% in NMSE), but
the reconstructed emissions are very different. Extra constraints
or observations should be introduced into the data assimilation if
we want to simultaneously calibrate the errors in boundary layer
height. At the current stage, for the purpose of practical applica-
tion of the iterative EnKF scheme, it is suggested that the boundary
layer height should be monitored near the nuclear power plant,
and the data assimilation system should use the observed bound-
ary layer height or the height derived from the meteorological
measurements, namely the similar configurations as experiment
Obs-DA. If the measurements are unavailable, ensemble numerical
weather predictions (NWP) should be used instead of the usage
of only one set of meteorological data, as suggested in [7]. The
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ensemble NWP data contains the information of the uncertainties
in boundary layer height and other parameters, so the substantial
uncertainties can be taken into account. In this study, the scenario is
relatively low-wind. However, the performance of the system may
also be influenced by the weather condition. For instance, when the
wind speed is extremely low, the plume rise will be very high. As a
result, it becomes difficult for the plume to reach the ground, which
leads to the insufficiency of the measurements. On the other hand,
if the wind is strong, the released puff will quickly leave the mon-
itored area, and the monitors may fail to capture the puff. In the
future study, the system will be further evaluated with the data
from various weather conditions (e.g., other experiments in the
Kincaid dataset).

This study is an effort toward an operational data assimilation
system for nuclear emergency management. This work only focuses
on the atmospheric dispersion process, and the evaluation using
nonradiative tracer experiment here shows the iterative EnKF data
assimilation system effectively correct the errors in the process. But
in this study, the measurements are tracer concentration, which is
different from the actual nuclear accident scenario, where gamma
dose rate (GDR) or in situ gamma spectrometric measurements
are mostly used. As a result, a new observational model should be
added to convert the concentration into gamma dose rate [37], and
there are some studies [11,15,38] trying to conduct data assimila-
tion using gamma dose rate data. In order to apply the proposed
iterative EnKF data assimilation method to the actual nuclear acci-
dent scenario, the following topics will be further investigated in
our future study: (1) computationally efficient gamma dose rate
calculation method should be developed for the Lagrangian puff
model; (2) extra constraints on nuclide ratios must be introduced
to reconstruct nuclide-specific source term in the situation where
only gamma dose rates are available; (3) the iterative EnKF scheme
is presently applicable for gaseous radionuclides, e.g., noble gas
Xenon-133 and gaseous iodine, ongoing research includes extend-
ing the scheme to particulate radionuclides (e.g., Cesium-137 and
particulate iodine).

The EnKF method can also be applied to correct the errors in the
deposition fields at the later stages of an accident. As mentioned
above, a deposition model should be added first. The contaminated
fields can be described by Eulerian method, and the state vec-

tor contains the radioactive contents in each grid box [39]. Some
studies [40–42] has developed EnKF data assimilation method to
reconstruct the deposition field for RODOS system.

5. Conclusions

In this study, our proposed iterative EnKF data assimilation
scheme in [24] is thoroughly evaluated with the data from Kincaid
tracer experiment [25], which involves highly buoyant plumes. The
data assimilation system is built by integrating the iterative EnKF
scheme with the Lagrangian puff-model in the POLYPHEMUS plat-
form. The data assimilation system simultaneously reconstructed
the source term and improved the model forecasts.

The DA system effectively corrected the errors in the wind
data (both the WRF predicted and on-site observed data), and
the errors in the a priori emission rates (about six magnitudes
underestimated). The DA analysis concentration (with unknown
emissions) significantly outperformed the free-running dispersion
models (with the actual, known SF6 emission rates). The recon-
structed emission rates had a high accuracy (87.5% within a factor
two) when using the on-site observed meteorological data. How-
ever, the performance deteriorated (62.5% within a factor two)
when using the WRF predicted meteorological data. The different
performances were caused by the uncertainties in the boundary
layer height, which is the key influential parameter in the proposed
EnKF data assimilation scheme. It is suggested that the boundary
layer height should be monitored near the nuclear power plant, and
the substantial uncertainties in boundary layer heights should also
been taken into account.

The method proposed here can be a useful tool not only in the
nuclear power plant accident emergency management, but also
with a little modification in the transport model in other similar sit-
uations where hazardous material is released into the atmosphere.
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