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a b s t r a c t

In the last decade, ensemble-based methods have been widely investigated and applied for data

assimilation of flow problems associated with atmospheric physics and petroleum reservoir history

matching. This paper focuses entirely on the reservoir history-matching problem. Among the

ensemble-based methods, the ensemble Kalman filter (EnKF) is the most popular for history-matching

applications. However, the recurrent simulation restarts required in the EnKF sequential data

assimilation process may prevent the use of EnKF when the objective is to incorporate the history

matching in an integrated geo-modeling workflow. In this situation, the ensemble smoother (ES) is a

viable alternative. However, because ES computes a single global update, it may not result in acceptable

data matches; therefore, the development of efficient iterative forms of ES is highly desirable. In this

paper, we propose to assimilate the same data multiple times with an inflated measurement error

covariance matrix in order to improve the results obtained by ES. This method is motivated by the

equivalence between single and multiple data assimilation for the linear-Gaussian case. We test the

proposed method for three synthetic reservoir history-matching problems. Our results show that the

proposed method provides better data matches than those obtained with standard ES and EnKF, with a

computational cost comparable with the computational cost of EnKF.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Since its introduction by Evensen (1994), the number of pub-
lications about EnKF has become extensive. EnKF has been applied
in diverse research fields including, oceanography (Bertino et al.,
2003; Keppenne and Rienecker, 2003), numerical weather predic-
tion (Houtekamer and Mitchell, 2005; Szunyogh et al., 2005),
hydrology (Reichle et al., 2002; Chen and Zhang, 2006; Liu et al.,
2008) and petroleum reservoir history matching (Aanonsen et al.,
2009; Oliver and Chen, 2010). Evensen (2007) presents a chronolo-
gical list of applications of EnKF. The first reservoir application of
EnKF was presented by Nævdal et al. (2002), where EnKF was
applied to update permeability fields for near-well reservoir models.
After this pioneer application, the interest and frequency of use of
EnKF as a history-matching technique increased significantly. Some
recent field applications of EnKF for history matching can be found
in Skjervheim et al. (2007), Bianco et al. (2007), Evensen et al.
(2007), Haugen et al. (2008), and Emerick and Reynolds (2011b).
Two recent review papers (Aanonsen et al., 2009; Oliver and Chen,
2010) summarize the main developments and applications of EnKF
in reservoir history-matching problems from 2001 to early 2010.
ll rights reserved.

rick),
The sequential data assimilation with EnKF requires modification
of the traditional history-matching problem from a parameter-
estimation problem to a parameter-state-estimation problem. Spe-
cifically, when applying EnKF for history matching, we update a
combined parameter-state vector, which includes the reservoir
model parameters (uncertain reservoir rock properties) and the
primary variables of the reservoir simulator (typically gridblock
pressure, fluid saturations and dissolved gas–oil ratio in a standard
black-oil reservoir simulator). The reason for including primary
variables, which represent the state of the dynamical system, is to
avoid the need to run the simulations from time zero every data
assimilation time-step. However, it requires an additional assump-
tion of statistical consistency between the updated vectors of model
parameters and states, where ‘‘statistical consistency’’ is defined in
Thulin et al. (2007). However, because the reservoir simulator
equations are highly nonlinear, this assumption is often violated,
which may result in substandard estimates of model parameters;
see, e.g., Wang et al. (2010).

Sequential data assimilation is an attractive feature of EnKF
when the objective is the closed-loop reservoir management
(Jansen et al., 2005, 2009; Wang et al., 2009; Peters et al., 2010;
Chen and Oliver, 2010; Chen et al., 2010). However, the simulation
restarts required by the sequential data assimilation are inconve-
nient when the goal is to incorporate the history matching in
workflows that integrate different parts of the reservoir modeling
process, e.g., combining seismic, structural and geological modeling
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with flow simulation; see, e.g., Zachariassen et al. (2011). These
workflows typically require integrating different geo-modeling soft-
wares and may include upscaling of the rock properties, which
makes the simulation restarts required by EnKF very inconvenient, if
not impossible.

The ensemble smoother (ES) was introduced by van Leeuwen
and Evensen (1996). Unlike EnKF, ES does not assimilate data
sequentially in time. Instead, ES computes a global update by
simultaneously assimilating all data available. Other than that ES
formulation is similar to EnKF. van Leeuwen and Evensen (1996)
found that EnKF performed better than ES when applied to an
ocean circulation model. Evensen and van Leeuwen (2000)
compared ES and EnKF with Lorenz equations and concluded that
EnKF outperforms ES because the recursive updates in the EnKF
keep the ensemble of states ‘‘on track’’ and closer to the true
solution. Recently, Skjervheim et al. (2011) compared ES and EnKF
and concluded that both methods gave similar results for the
reservoir history-matching problems considered in their paper.
The major advantage of ES is that it avoids restarts of the reservoir
simulator. This makes ES much faster and easier to implement
than EnKF. For example, Skjervheim et al. (2011) reported that ES
was 10 times faster than EnKF in the their reservoir history-
matching applications. The elimination of simulation restarts also
makes ES an attractive option for the previously mentioned geo-
modeling workflows.

In fact, when we apply ES for reservoir history matching, we
convert the parameter-state-estimation problem back to a para-
meter-estimation problem. Thus, ES removes the parameter-state
inconsistency issue observed in the sequential data assimilation
with EnKF. However, Reynolds et al. (2006) showed that EnKF is
similar to applying, at each data assimilation time-step, one
Gauss–Newton iteration with a full step and the sensitivity matrix
replaced by an average sensitivity matrix estimated from the
ensemble. Based on this fact, we conjecture that the process of
assimilating data which are closely spaced in time approximately
corresponds to applying several Gauss–Newton corrections to the
state vector. If true, this conjecture would partially explain the
reasonable performance of EnKF when applied to history match-
ing production data. With ES, on the other hand, all data are
assimilated simultaneously, which means that a single Gauss–
Newton correction is applied to condition the ensemble to all data
available. Hence, ES may not be able to provide acceptable data
matches when applied to reservoir history-matching problems.

Inspired by the work of Rommelse (2009), in Emerick and
Reynolds (2012), we introduced a method in which the same data
are assimilated multiple times with the covariance of the mea-
surement errors multiplied by the number of data assimilations.
In Emerick and Reynolds (2012), we showed that single and
multiple data assimilation (MDA) are equivalent for the linear-
Gaussian case and presented computational evidence that MDA
can improve EnKF estimates and data matches when assimilating
time-lapse seismic data. Here, we extend the ideas presented in
Emerick and Reynolds (2012) to history match production data
with ES. In our previous paper, we considered only the case in
which the covariance of the measurement errors was multiplied
by the number of data assimilations. Here, we generalize this
procedure by presenting the condition that the multiplication
coefficients of the data covariance matrix must satisfy in order to
guarantee the equivalence between single and multiple data
assimilation for the linear-Gaussian case.

As pointed out by one of the reviewers, Oliver and Chen (2009)
also considered an idea similar to the one from Rommelse (2009). In
Oliver and Chen (2009), the authors present the assimilation of
‘‘pseudo-observation’’ as a procedure to improve the initial ensem-
ble. Given an observation dobs,1 with variance s2

d , Oliver and Chen
(2009) considered the possibility of assimilating dobs,1 with a
measurement error variance s2
d,1 together with a pseudo-observa-

tion dobs,2 with a measurement error variance s2
d,2. For the linear

case, they worked out the variances that should be assigned to dobs,1

and dobs,2 to obtain the same posterior mean and variance that
should be obtained by assimilating only dobs,1 with the original
measurement error variance s2

d . They focused on conditioning the
initial ensemble to the pseudo-observation prior to applying EnKF to
assimilate data and did not pursue that idea of assimilating the
actual observation multiple times.

In a paper which appeared after our manuscript was originally
submitted, Chen and Oliver (2012) proposed using the ensemble
randomized maximum likelihood (EnRML) method (Gu and
Oliver, 2007) as an iterative ensemble smoother. They compared
EnKF, ES, sequential-EnRML and batch-EnRML for a small five-
spot problem and the Brugge field case (Peters et al., 2010). They
concluded that ES often requires iterations to achieve satisfactory
data matches. For the Brugge case, the proposed iterative ensem-
ble smoother (batch-EnRML) required 26 iterations to achieve an
average data mismatch objective function which was slightly
higher that the one obtained by the standard EnKF. Each iteration
of batch-EnRML requires running reservoir simulations for the
whole ensemble at least once. However, each iteration may
require more than one ensemble run because the line search
may require cutting the step-size and then running the whole
ensemble again. Therefore, the computational cost of 26 iterations
of batch-EnRML is definitely much higher than the cost of EnKF.

This paper is organized as follows: in the next three sections,
we present EnKF, ES and EnRML equations. Next, we briefly
review the equivalence between single and multiple data assim-
ilation for the linear-Gaussian case and generalize the MDA
method. Then, we explain the proposed ES-MDA procedure. After
that we present three synthetic reservoir problems. The first
problem is a 2D two-phase flow model. For this problem, we
repeat the data assimilation with 10 different initial ensembles to
obtain more statistically meaningful results and compare the
performance of ES-MDA with EnKF, standard ES and batch-
EnRML. The second problem is a reservoir with a single producing
well where the observations correspond to layer-rates at a
specific time, mimicking production-logging data. The third
problem pertains to the Brugge field. The last section of the paper
presents our conclusions.
2. Ensemble Kalman filter

In the EnKF, we define the Ny-dimensional state vector at the
nth data assimilation time-step, yn, as

yn ¼
mn

pn

" #
, ð1Þ

where mn is the Nm-dimensional vector of model parameters, and
pn is the Np-dimensional vector representing the state of the
dynamical system. For reservoir applications, pn contains the
primary variables of the reservoir simulator (typically gridblock
pressures, saturations and dissolved gas–oil ratio). The super-
script n indicates the nth data assimilation time-step. The EnKF
analysis equation can be written as

yn,a
j ¼ yn,f

j þCn,f
YDðC

n,f
DDþCn

DÞ
�1
ðdn

uc,j�dn,f
j Þ ð2Þ

for j¼ 1;2, . . . ,Ne, with Ne denoting the number of ensemble
members.

In the above equation, Cn,f
YD is the Ny�Nn cross-covariance

matrix between the forecast state vector and predicted data; Cn,f
DD

is the Nn�Nn auto-covariance matrix of predicted data; Cn
D is the

Nn�Nn covariance matrix of observed data measurement errors;
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Nn is the number of data points assimilated at the nth data
assimilation time-step; dn

uc is the vector of ‘‘perturbed’’ observa-
tions, i.e., dn

uc �N ðd
n
obs,Cn

DÞ with dn
obs denoting the Nn-dimensional

vector of observed data at the nth data assimilation time-step; dn,f

is the corresponding Nn-dimensional vector of predicted data. The
superscripts a and f denote analysis and forecast, respectively.
3. Ensemble smoother

Unlike oceanic and atmospheric models, which present chaotic
and unstable dynamics (Evensen, 2007, Chapter 6) reservoir
simulation models are typically stable functions of the rock
property fields. If we also neglect model uncertainty, which is a
common assumption in reservoir history-matching problems, we
only need to consider the parameter-estimation problem when
applying ES. In this case, we write the analyzed vector of model
parameters, ma, as

ma
j ¼mf

j þCf
MDðC

f
DDþCDÞ

�1
ðduc,j�df

j Þ ð3Þ

for j¼ 1;2, . . . ,Ne. The notation is similar to the one presented for
EnKF. Cf

MD is the cross-covariance matrix between the prior vector
of model parameters, mf, and the vector of predicted data, df; Cf

DD

is the Nd�Nd auto-covariance matrix of predicted data. Note that
we use Nd to denote the total number of measurements assimi-
lated, which is different from our previous notation for EnKF,
where we use Nn to denote the number of measurements at the
nth data assimilation time-step. Similar to the EnKF case,
duc �N ðdobs,CDÞ with dobs denoting the Nd-dimensional vector of
observed data and CD denoting the Nd�Nd covariance matrix of
observed data measurement errors.
4. Ensemble randomized maximum likelihood

EnRML was introduced by Gu and Oliver (2007) as an iterative
EnKF. In a recent paper, Chen and Oliver (2012) propose using
EnRML as an iterative ensemble smoother. They call this proce-
dure batch-EnRML. EnRML uses a Gauss–Newton update equa-
tion, i.e.

m‘þ1
j ¼ b‘m

f
j þð1�b‘Þm

‘
j�b‘C

f
MG

T

‘ ðG‘C
f
MG

T

‘þCDÞ
�1

�½d‘j�duc,j�G‘ðm
‘
j�mf

j Þ� ð4Þ

for j¼ 1;2, . . . ,Ne. In the above equation, ‘ denotes the iteration
index and b‘ denotes the step-size. During the iterative process,
Cf

M is fixed and estimated based on the forecast ensemble. G is the
average sensitivity matrix, which is estimated based on the
ensemble by ‘‘solving’’

DD‘ ¼ G‘DM‘
ð5Þ

for G‘ using singular value decomposition (SVD). In Eq. (5),
DD‘ ¼D‘�D

‘
, where D‘ is the matrix with the ensemble of

predicted data at the ‘th iteration, i.e., the jth column of D‘

corresponds to the predicted data from the jth ensemble member.
D
‘

is the matrix with all columns equal to d
‘
, which represents

the average of all columns of D‘ . Similarly, DM‘
¼M‘

�M
‘
, where

the jth column of M‘ contains the vector of model parameters
corresponding to the jth ensemble member at the ‘th iteration,
and M

‘
is the matrix with all columns equal to m‘ , which

represents the average of all columns of M‘ .
At each iteration of EnRML, if the updated ensemble obtained

with Eq. (4) does not result in a decrease in the average data
mismatch objective function, it is necessary to perform a line
search. Gu and Oliver (2007) and Chen and Oliver (2012) do not
provide details about the line-search procedure they use. Here,
we use the following batch-EnRML implementation:
1.
 Run the ensemble from time zero until the end of the
history.
2.
 Initialize: ‘¼ 0, Ncuts ¼ 0, b0 and m0
j ¼mf

j for j¼ 1;2, . . . ,Ne.

3.
 Compute G‘ using Eq. (5).

4.
 For j¼1 to Ne:

(a) Compute m‘þ1
j using Eq. (4).

(b) Rerun the ensemble from time zero.
(c) Compute O‘þ1

d,j ¼
1
2 ðd

‘þ1
j �duc,jÞ

TC�1
D ðd

‘þ1
j �duc,jÞ.
d (for). P

5.
en
Compute O

‘þ1

d ¼ ð1=NeÞ
Ne

j ¼ 1 O‘þ1
d,j .
6.
 If O
‘þ1

d oO
‘
d then:

(a) Accept the step and increase the step-size for the next
iteration, b‘þ1 ¼ 2b‘ .

(b) If b‘þ14b0, then set b‘þ1 ¼ b0.
(c) Set Ncuts ¼ 0.
(d) Increase the iteration index, ‘¼ ‘þ1.

Else:
(a) Reduce the step size, b‘ ¼ b‘=2:
(b) Set Ncuts ¼Ncutsþ1.
(c) If Ncutsr5, then return to step 4.
d (if).

7.
en
Check termination criteria.
8.
 If any one of the termination criteria is satisfied, then stop
the data assimilation. Otherwise, return to step 3.
We use the following termination criteria:
�
 max9m‘þ1
i,j �m‘

i,j9o10�3 for i¼ 1;2, . . . ,Nm and j¼ 1;2, . . . ,Ne .
�
 9ðO
‘þ1

d �O
‘
dÞ=O

‘
d9o10�2.
�
 Maximum number of iterations¼10.

�
 Maximum number of consecutive cuts in the step-size¼5.

5. Multiple data assimilation for the linear-Gaussian case

In Emerick and Reynolds (2012), we proved the equivalence
between single and multiple data assimilation for the linear-
Gaussian case using two procedures. In the first procedure, we
started with the Kalman filter equations and showed that the
updated mean and covariance obtained with MDA corresponds to
the same posterior mean and covariance obtained assimilating
data only once with the actual covariance of the measurement
errors, CD. In the second procedure, we started with a sample of
the prior probability density function (pdf) and showed that after
data assimilation with MDA, the analyzed state vector is a sample
of the correct posterior pdf. Although these two proofs are
formally equivalent, the second proof explicitly shows that we
also need to perturb the observations based on the inflated CD to
obtain the correct posterior pdf for the linear-Gaussian case. In
this section, we generalize the second proof. Specifically, instead of
assuming that CD is multiplied by the number of data assimilations,
here, we consider a more general case, in which CD is increased by a
different coefficient, ai, each time we assimilate data. Then, we
derive the condition for the coefficients ai’s required to guarantee
the equivalence between single and multiple data assimilation. For
the sake of completeness, we repeat some of the steps of the proof
presented in Emerick and Reynolds (2012).

The linear problem refers to the case in which the relation
between the vector of predicted data, d, and the vector of model
parameters, m, is expressed in the form

d¼ Gm, ð6Þ
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where G is the Nd � Nm sensitivity matrix. To assimilate data Na

times, we first define

~dobs �

dobs

^

dobs

2
64

3
75, ð7Þ

~G �

G

^

G

2
64

3
75 ð8Þ

and

~C D �

a1CD 0 � � � 0

0 a2CD � � � 0

^ & ^

0 � � � aNa
CD

2
66664

3
77775: ð9Þ

In the above definitions, we simply repeated the vector dobs and
the matrices G and CD Na times. Hence, for the MDA case, the
linear relation (Eq. (6)) becomes

~d ¼ ~Gm: ð10Þ

Because we focus on ES, in this paper, we write the equations
in terms of the vector of model parameters, m. This is different
from the notation used in Emerick and Reynolds (2012), where
the equations were presented for a combined parameter-state
vector y.

For sampling the posterior pdf with MDA, we start with a sample
from the prior pdf, mf, i.e., mf �N ðmpr,CMÞ, where mpr is the prior
mean and CM is the prior model covariance matrix. In addition, we
define the modified vector of perturbed observations as

~duc �

d1
uc

^

dNa

uc

2
664

3
775, ð11Þ

where di
uc �N ðdobs,aiCDÞ, for i¼ 1;2, . . . ,Na. It is important to note

that the superscript i for di
uc does not refer to time; i simply refers to

the ith assimilation of the same data.
Following the procedure presented in Emerick and Reynolds

(2012), we define the random vector ~ma as the minimizer of the
RML objective function (Reynolds et al., 1999) modified for the
MDA case, i.e.

~ma
¼ arg min

m
~OðmÞ, ð12Þ

where

~OðmÞ ¼ 1
2 ðm�mf Þ

TC�1
M ðm�mf Þþ1

2ð
~Gm� ~ducÞ

T ~C
�1

D ð
~Gm� ~ducÞ: ð13Þ

In Eq. (13), equivalent definitions of the random variables, ~duc and
mf, respectively, are given by

~duc ¼
~dobsþ

~C
1=2

D
~zd, ð14Þ

where ~zd �N ð0,INaNd
Þ and

mf ¼mprþC1=2
M zm, ð15Þ

where zm �N ð0,INm
Þ. Note that, as in Reynolds et al. (1999), the

model ~ma that minimizes Eq. (13) is also a random variable.
Requiring the gradient of ~OðmÞ to vanish, we can solve the

resulting expression for m and denote the result as ~ma. This
procedure leads to

~ma
¼ CMAPfC

�1
M ðmprþC1=2

M zmÞþ
~G

T ~C
�1

D ð
~dobsþ

~C
1=2

D
~zdÞg: ð16Þ

The steps required to obtain Eq. (16) are presented in Emerick and
Reynolds (2012). In Eq. (16), CMAP is the correct posterior covariance
matrix, which is given by Tarantola (2005, p. 66)

CMAP ¼ ðC
�1
M þGTC�1

D GÞ�1
¼ CM�CMGT

ðCDþGCMGT
Þ
�1GCM: ð17Þ

In order to prove the equivalence between single and multiple
data assimilation, it is necessary to show that ~ma obtained by Eq.
(16) is a sample of the correct pdf, i.e., that ~ma

�N ðmMAP,CMAPÞ,
where mMAP denotes the maximum a posteriori (MAP) estimate,
which is given by Tarantola (2005, p. 66)

mMAP ¼ CMAPðC
�1
M mprþGTC�1

D dobsÞ

¼mprþCMGT
ðCDþGCMGT

Þ
�1
ðdobs�GmprÞ: ð18Þ

Because the posterior pdf is Gaussian, N ðmMAP,CMAPÞ, we only
need to show that

E½ ~ma
� ¼mMAP ð19Þ

and

cov½ ~ma
� ¼ E½ð ~ma

�mMAPÞð ~m
a
�mMAPÞ

T
� ¼ CMAP: ð20Þ

Writing the expression for E½ ~ma
�, we obtain

E½ ~ma
� ¼ CMAPfC

�1
M ðmprþC1=2

M E½zm�Þþ
~G

T ~C
�1

D ð
~dobsþ

~C
1=2

D E½~zd�Þg

¼ CMAPfC
�1
M mprþ

~G
T ~C
�1

D
~dobsg

¼ CMAP C�1
M mprþ½G

T
� � � GT

�

1
a1

C�1
D � � � 0

^ & ^

0 � � � 1
aNa

C�1
D

2
664

3
775

dobs

^

dobs

2
64

3
75

8>><
>>:

9>>=
>>;

¼ CMAP C�1
M mprþ½G

T
� � � GT

�

1
a1

C�1
D dobs

^
1
aNa

C�1
D dobs

2
664

3
775

8>><
>>:

9>>=
>>;

¼ CMAP C�1
M mprþ

XNa

i ¼ 1

1

ai

 !
GTC�1

D dobs

( )
: ð21Þ

The last equality of Eq. (21) is equivalent to Eq. (18) if, and only if

XNa

i ¼ 1

1

ai
¼ 1: ð22Þ

Note that the choice ai ¼Na for i¼ 1, . . . ,Na satisfies the
condition of Eq. (22), but there are infinitely many other possible
choices for the ai’s. By choosing a set of ai’s that satisfies Eq. (22),
MDA yields the correct posterior mean for the linear-Gaussian
case, i.e.

E½ ~ma
� ¼mMAP: ð23Þ

Following the same procedure presented in Emerick and
Reynolds (2012), it can be shown that

cov½ ~ma
� ¼ CMAPðC

�1
M þ

~G
T ~C
�1

D
~GÞCMAP: ð24Þ

Eq. (24) corresponds to Eq. (40) of Emerick and Reynolds
(2012) and it was obtained by using the fact that the vectors zm

and ~zd are independent realizations of N ð0,INm
Þ and N ð0,INaNd

Þ,
respectively. From Eqs. (24), (22), (17), it follows that

cov½ ~ma
� ¼ CMAP C�1

M þ½G
T
� � � GT

�

1
a1

C�1
D � � � 0

^ & ^

0 � � � 1
aNa

C�1
D

2
664

3
775

G

^

G

2
64

3
75

8>><
>>:

9>>=
>>;CMAP

¼ CMAP C�1
M þ

XNa

i ¼ 1

1

ai

 !
GTC�1

D G

( )
CMAP

¼ CMAPfC
�1
MAPgCMAP

¼ CMAP, ð25Þ

which completes the proof. This proof assumes the correct full-
rank prior covariance matrix, CM, which will be the case for ES (or
EnKF) only when the size of the ensemble goes to infinity.
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6. ES-MDA

The proof presented in the previous section applies for the linear-
Gaussian case. For the nonlinear case, this equivalence does not
hold. The motivation for using MDA in the nonlinear case comes
from the fact that ES is equivalent to a single Gauss–Newton
iteration with a full step and an average sensitivity estimated from
the prior ensemble (Reynolds et al., 2006). In this sense, MDA can be
interpreted as an ‘‘iterative’’ ensemble smoother (with a predefined
number of iterations), where instead of a single and potentially large
Gauss–Newton correction, we perform multiple smaller corrections
in the ensemble. Note that inflating the covariance matrix associated
10.9

28.5

17.8

9.5 8.7
12.5

22.9

0

20

40

60

EnKF ES-MDA
(4x-a)

ES-MDA
(4x-b)

EnRML
(0.5)

EnRML
(1.0)

Case

O
N

ES ES-MDA
(2x)

Fig. 1. Box plots of the normalized objective function based on 10 ensembles:

Example 1.

Fig. 2. Field water production rate for the first ensemble: Example 1. The vertical dash

curve is the prediction from the true model; dashed curve is the ensemble mean pre

(a) Prior, (b) EnKF, (c) ES, (d) ES-MDA (2� ), (e) ES-MDA (4� -a), (f) ES-MDA (4� -b), (
with the measurement errors to damp the changes in the model at
early iterations of Newton-like methods is not new in the reservoir
history-matching literature; see, e.g., Wu et al. (1999) and Gao and
Reynolds (2006).

The ES-MDA algorithm follows:
1.
ed l

dic

g) b
Choose the number of data assimilations, Na, and the coeffi-
cients ai for i¼ 1, . . . ,Na.
2.
 For i¼1 to Na:
(a) Run the ensemble from time zero.
(b) For each ensemble member, perturb the observation

vector using duc ¼ dobsþ
ffiffiffiffiffiai
p

C1=2
D zd, where zd �N ð0,INd

Þ.
(c) Update the ensemble using Eq. (3) with CD replaced by

aiCD.
ine in

tion.

atch
As noted in Eq. (3), ES requires the inversion of the Nd�Nd

matrix C given by

C ¼ Cf
DDþCD: ð26Þ

Because Cf
DD is a real-symmetric positive semi-definite matrix, C

given by Eq. (26) will be real-symmetric positive-definite as long
as we choose CD positive-definite. However, C may be poorly
conditioned (Evensen, 2007, Chapter 14). Hence, EnKF and ES
implementations typically use a pseudo-inverse of C computed
using a truncated singular value decomposition (TSVD). For
reservoir applications, because C is typically constructed based
on data with different magnitudes, e.g., water-cut and pressure
data, C may be poorly scaled and we may lose the information
necessary to match data when truncating small singular values;
see, e.g., Wang et al. (2010). Therefore, in our implementation, we
rescale the components of the matrix C before calculating the
dicates the end of the historical period. White dots are the history; solid

The remaining curves are the predictions from the ensemble members.

-EnRML (b0 ¼ 0:5), and (h) batch-EnRML (b0 ¼ 1).
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TSVD. For ES, the number of measurements assimilated at the
analysis step can be very high, in which case, the TSVD of C

becomes computationally expensive. In this situation, the sub-
space inversion introduced by Evensen (2004) is an attractive
alternative. In our implementation of ES, if the number of
measurements is no greater than the size of the ensemble, we
compute the pseudo-inverse of C using TSVD. If the number of
measurements is larger than the size of the ensemble, we use the
subspace inversion. In both cases, we use rescaling as described in
Appendix A of Emerick and Reynolds (2012). For the three
examples presented in this paper, we kept 99.9% of the total
energy of the singular values when applying SVD in both, pseudo-
inverse or subspace inversion procedures.

As noted in Emerick and Reynolds (2012), we proved the
equivalence between single and multiple data assimilation for the
linear case by assimilating data Na times simultaneously. However,
in the MDA procedure presented above, we assimilate data Na times
consecutively and, before each data assimilation, we rerun the
ensemble. For the linear-Gaussian case, these two approaches are
equivalent. For the nonlinear case, the reruns effectively serve to
update the ‘‘average sensitivity’’ before the next data assimilation.
Also note that in the ES-MDA algorithm, every time we repeat the
data assimilation, we resample the vector of perturbed observations,
i.e., we recompute duc �N ðdobs,aiCDÞ. This procedure tends to
reduce sampling problems caused by matching outliers that may
be generated when perturbing the observations.
Fig. 3. Mean permeability fields (mD) for the first ensemble: Example 1. (a) True, (b)

(h) batch-EnRML (b0 ¼ 0:5), and (i) batch-EnRML (b0 ¼ 1).
One potential difficultly with the proposed MDA procedure is
that Na and the coefficients ai’s need to be selected prior to the data
assimilation. The simplest choice for a is ai ¼Na for all i. However,
intuitively we expect that choosing ai in a decreasing order can
improve the performance of the method. In this case, we start
assimilating data with a large value of a, which reduces the
magnitude of the initial updates; then, we gradually decrease a.

Even though we focus on ES, conceptually, this procedure can
also be applied to EnKF as described in Emerick and Reynolds
(2012). Nevertheless, the moderate set of tests we have done
indicate that MDA gives only small improvements when applied
to EnKF, which makes ES-MDA a much more effective option in
terms of computational cost than EnKF-MDA. This is consistent with
our conjecture that when successive data have similar information
content, the sequential data assimilation in EnKF is somewhat
similar to accumulating several Gauss–Newton iterations.
7. Example 1: waterflooding

The first example is a two-phase (oil and water) synthetic
reservoir model on a 2D uniform grid with 60�60 gridblocks. The
dimensions of the gridblocks are 150 ft�150 ft�25 ft. The model
parameters are gridblock log-permeabilities, lnðkÞ. The true per-
meability field was generated from an anisotropic exponential
correlation function with a major correlation length of 3750 ft
prior, (c) EnKF, (d) ES, (e) ES-MDA (2� ), (f) ES-MDA (4� -a), (g) ES-MDA (4� -b),
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(which corresponds to the width of 25 gridblocks) and a minor
correlation length of 1050 ft (i.e., seven gridblocks) oriented at
451. The prior mean of lnðkÞ is 5.0 and the prior variance is 1.0 for
all gridblocks. In this model, there are five producing wells and
two water injectors. All producing wells operate at a fixed
bottomhole pressure of 1000 psi, and the injectors operate at a
fixed bottomhole pressure of 3000 psi. The observed data corre-
spond to oil and water production rate and water injection rate
every 150 days for a period of 3900 days. The observations were
obtained by adding random noise to the data generated by the
true model. The noise level was selected as 5% of the data.

Using the same prior mean and covariance function of the true
model, we generated 10 ensembles of 100 models each. For each
ensemble, we performed data assimilation using EnKF, ES, batch-
EnRML and ES-MDA. For batch-EnRML, we tried two step-sizes,
b0 ¼ 0:5 and b0 ¼ 1. For ES-MDA, we considered the following cases:
Table 1
Average computational costs: Example 1.
�
Fig
(4�
ES-MDA (2� ): ES assimilating data twice (a1 ¼ a2 ¼ 2:0Þ.

�

Method Number of equivalent

ES-MDA (4� -a): ES assimilating data four times (a1 ¼ a2 ¼

a3 ¼ a4 ¼ 4:0Þ.

simulation runs
�

EnKF 458

ES 101

ES-MDA (2� ) 203

ES-MDA (4� ) 405

Batch-EnRML (b0 ¼ 0:5) 1360

Batch-EnRML (b0 ¼ 1) 1270
ES-MDA (4� -b): ES assimilating data four times (a1 ¼ 9:333,
a2 ¼ 7:0, a3 ¼ 4:0 and a4 ¼ 2:0).

Fig. 1 presents the box plot of the normalized objective
function (ON) obtained from each case. These box plots were
computed based on combining the results of the 10 different
initial ensembles. In the box plots, the horizontal line within each
. 4. Standard deviation of log-permeability for the first ensemble after data assimilat

-b), (f) batch-EnRML (b0 ¼ 0:5), and (g) batch-EnRML (b0 ¼ 1).
box corresponds to the median, the bottom and top of each box
correspond to the percentiles P25 and P75. The ending points of
the box plots correspond to the percentiles P2 and P98. The dots
correspond to the mean and the crosses correspond to the
minimum and maximum. The numbers next to the boxes corre-
spond to the value of the median. The normalized objective
function was computed using

ON ¼
OðmÞ

Nd
, ð27Þ

where

OðmÞ ¼ 1
2 ðm�mprÞ

TC�1
M ðm�mprÞþ

1
2ðd�dobsÞ

TC�1
D ðd�dobsÞ: ð28Þ

According to the results in Fig. 1, ES gave relatively high values
of ON compared to EnKF. This fact supports our conjecture that
ion: Example 1. (a) EnKF, (b) ES, (c) ES-MDA (2� ), (d) ES-MDA (4� -a), (e) ES-MDA



A.A. Emerick, A.C. Reynolds / Computers & Geosciences 55 (2013) 3–1510
EnKF performs reasonably well when history matching produc-
tion data because the sequential assimilation approximately
corresponds to several Gauss–Newton corrections. Increasing
the number of data assimilations improved the data matches
and, consequently, reduced the values of ON obtained by ES. After
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four data assimilations, the values of ON are slightly lower than
the ones obtained by EnKF. Selecting the coefficients ai’s in a
decreasing order resulted in further reduction in the values of ON,
although the differences are not significant. We tried other
combinations of the coefficients ai’s, but no significant differences
were obtained. The final values of ON obtained by batch-EnRML
were lower than the ones obtained by ES, but higher than EnKF
and ES-MDA (4� ). The step-size b0 ¼ 0:5 resulted in better data
matches than b0 ¼ 1. In fact, for 4 of the 10 initial ensembles,
batch-EnRML with b0 ¼ 1 obtained results similar to standard ES.
For these ensembles, the iterative process stopped at the second
iteration because of five consecutive cuts in the step-size without
reduction in the average data mismatch objective function. For
b0 ¼ 0:5, on the other hand, batch-EnRML was able to improve the
results of ES for the 10 ensembles. These results illustrate one
problematic aspect of EnRML, namely, the performance of the
method may be strongly dependent on the choice of the initial
step-size.

Fig. 2 presents the field water production rate for the first of
the 10 ensembles. Besides the historical period (3900 days), we
also include 3750 days of forecast. For comparison, we also show
the prediction obtained by the true model in each plot. The results
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presented in Fig. 2 were obtained by running the final ensembles
after data assimilation from time zero. Fig. 2 shows that ES failed
in matching the water breakthrough time for most of the
ensemble members. Two data assimilations were not enough to
obtain good data matches of the water production rate. Four data
assimilations, on the other hand, resulted in very good water data
matches, which are better than the ones obtained by EnKF and
batch-EnRML. For batch-EnRML with b0 ¼ 1, the predictions of
water production rate are very similar to the ones obtained by ES
because, for the first ensemble, the iterative process stopped at
the second iteration because of five consecutive cuts in the step-
size without reduction in the value of the average objective
function. Fig. 3 presents the final mean permeability fields for
the first ensemble. For visual comparison, we also include the true
permeability field in this figure. Fig. 3 shows that the mean
permeability field obtained by ES is much smoother than the ones
obtained by EnKF, ES-MDA and batch-EnRML (b0 ¼ 0:5), which is
another indication that the single linear update of ES is not
enough for fully conditioning the ensemble of permeability fields
to the observations. Fig. 4 presents the standard deviation of
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log-permeability after data assimilation for the first of the 10
ensembles considered in this section. This figure shows that
improving the quality of the data matches results in reduction of
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the ensemble variability. This is expectable because ensemble-based
methods ‘‘search for solutions’’ in a subspace spanned by the initial
ensemble. When we use an iterative method, we become more
restrictive by searching for ‘‘solutions’’ with better data matches.
Thus, it is reasonable to expect that there will be fewer independent
‘‘solutions’’ in this subspace which give a good data match, and this
results in a reduction in the ensemble variance.

We estimated the average computational cost of each proce-
dure in terms of the number of equivalent simulation runs, and
the results are presented in Table 1. The CPU time required by the
data assimilation with EnKF is 4.58 times larger than the CPU
time used to run an initial ensemble from time zero without data
assimilation. This difference occurs mainly because of the addi-
tional CPU time required by EnKF to restart reservoir simulations.
The CPU time required by ES is practically the same as the CPU
time used to run an ensemble without data assimilation. MDA
increases the CPU time of ES by the factor equal to the number of
data assimilations. For this example, the CPU time of ES-MDA
(4� ) is slightly lower than the CPU time used by EnKF. For batch-
EnRML, the iterative process often requires cutting the step-size
and rerunning the ensemble, which results in a CPU time more
than three times larger than the CPU time of ES-MDA (4� ). For
this example, we used observations every 150 days during the
data assimilations. Note that increasing the frequency of data
would increase the computational cost of EnKF (because we
would have more simulation restarts), but would have a small
impact on the computational cost of ES, ES-MDA and batch-
EnRML.
Fig. 9. Data matches for well P5: Brugge case. White dots are the history; dashed curve i

ensemble members. (a) EnKF (bottomhole pressure), (b) EnKF (water rate), (c) ES (botto

(f) ES-MDA (4� ) (water rate).
8. Example 2: production-logging data

The second example is a single-phase synthetic reservoir model
on a 3D uniform grid with 11�11�40 gridblocks. The dimensions
of the gridblocks are 200 ft�200 ft�25 ft. In this model, there is a
single producing well at the center of the reservoir completed in all
40 layers and operating at a constant rate of 1000 stb/day. The
observed data correspond to a single measurement of liquid rate at
each of the 40 layers after 30 days of production, mimicking the data
obtained from a production-logging acquisition. The noise level
added to each datum corresponds to 2% of the layer-rate predicted
by the true model. We chose a small noise level to make the
problem more challenging for data assimilation. The model para-
meters are the log-permeabilities for each of the 40 layers. Each
layer of the reservoir has homogeneous and isotropic permeabilities.
The log-permeability of each layer of the true model and the initial
ensemble was obtained by independently sampling N ð5:0,1:0Þ.
Hence, there is no correlation in the permeability between layers.
This problem was designed to test our conjecture that sequential
assimilation of data with overlapping information content is one of
the reasons for the good performance of EnKF when history
matching production data. For the problem considered in this
section, the production-logging data are available at only one time.
In this situation, EnKF becomes equivalent to ES.

We assimilated the production-logging data using ES, batch-
EnRML and ES-MDA with two and four data assimilations. For
batch-EnRML, we used an initial step-size b0 ¼ 0:5. For ES-MDA
(2� ), we used a1 ¼ a2 ¼ 2:0. For ES-MDA (4� ), we used a1 ¼ 9:333,
s the ensemble mean prediction. The remaining curves are the predictions from the

mhole pressure), (d) ES (water rate), (e) ES-MDA (4� ) (bottomhole pressure), and



A.A. Emerick, A.C. Reynolds / Computers & Geosciences 55 (2013) 3–15 13
a2 ¼ 7:0, a3 ¼ 4:0 and a4 ¼ 2:0. The ensemble size is 100. Fig. 5
presents the box plot of the normalized data mismatch objective
function (ON,d) obtained for each case. Here, ON,d was computed
using

ON,dðmÞ ¼
1

2Nd
ðd�dobsÞ

TC�1
D ðd�dobsÞ: ð29Þ

According to the results in Fig. 5, ES with single data assimila-
tion resulted in an unreasonably high value of ON,d. ES-MDA
significantly improved the data matches. After four data assimila-
tions, the median value of ON,d was reduced to 6.7, which is 219
times smaller than the value obtained with the standard ES.
Batch-EnRML obtained a median value of ON,d equal to 36.4, which
is 5.4 times larger than the value obtained with ES-MDA (4� ).
In terms of the computational cost, batch-EnRML required nine
iterations which corresponded to a total of 1100 reservoir simula-
tions, while ES-MDA (4� ) required 400 reservoir simulations.
Fig. 6 presents the predicted layer-rates for each case. Fig. 6b
indicates that ES resulted in possible overcorrection when matching
the data from layers 5 and 17. ES-MDA (2� ) and batch-EnRML
were not able to match data from layer 2 and overestimated the
liquid rate from layer 29. ES-MDA (4� ), on the other hand,
gave excellent data matches for all layers of the model. Fig. 7
presents the corresponding values of permeability for each reservoir
layer showing that ES-MDA (4� ) captured the correct permeability
field.
Fig. 10. Data matches for well P14: Brugge case. White dots are the history; dashed cur

the ensemble members. (a) EnKF (bottomhole pressure), (b) EnKF (water rate), (c) ES (b

and (f) ES-MDA (4� ) (water rate).
9. Example 3: Brugge field

The third example is the Brugge field (Peters et al., 2010). The
Brugge field is a synthetic reservoir designed as a benchmark
problem for evaluating methods for waterflooding optimization
combined with history matching in a closed-loop workflow.
A description of the case can be found in Peters et al. (2010). In
the original Brugge dataset, there are 104 realizations of rock
properties (porosity, horizontal and vertical permeabilities and net-
to-gross ratio), 10 years of production history and a synthetic time-
lapse seismic. Here, we history match only the production data,
which correspond to ‘‘measurements’’ of the oil and water rates at
the producing wells and bottomhole pressure at the producing and
water injection wells. We assumed that the noise level corresponds
to 3% for oil rate data and 5% for water rate data. For bottomhole
pressure, we assumed a constant measurement error of 0.5 bars
(7.25 psi). Even though data are available with a frequency of 30
days, we assimilate data every 120 days using EnKF, ES and ES-MDA
(4� ). For this last case, the coefficients ai’s are the same as in the
case ES-MDA (4� -b) of the example 1. Because the number of wells
in the Brugge field is large (20 producers and 10 water injectors), we
used localization to reduce problems related to sampling errors and
limited degrees of freedom. We defined the localization regions using
the procedure described in Emerick and Reynolds (2011a,b).

Fig. 8 presents the box plot of ON,d obtained from each case.
According to the results presented in this figure, ES resulted in
values of ON,d about four times larger than those based on results
ve is the ensemble mean prediction. The remaining curves are the predictions from

ottomhole pressure), (d) ES (water rate), (e) ES-MDA (4� ) (bottomhole pressure),



Table 2
Computational costs: Brugge case.

Case Number of equivalent

simulation runs

EnKF 367

ES 106

ES-MDA (4� ) 430
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from EnKF. ES-MDA (4� ) improved significantly the final data
matches and the values of ON,d are about three times lower than
EnKF. Figs. 9 and 10 present the data matches obtained for two
producing wells (P5 and P14). These figures show that ES was not
able to achieve reasonable data matches. Also, the predictions
from the ES-MDA (4� ) are in better agreement with the histor-
ical data than the ones obtained by EnKF; see, e.g., Fig. 9a and b,
which shows that EnKF results in slightly biased predictions
compared to the historical data. Although we show the plots of
only two wells, these results are representative of what is
observed in most of the wells. Fig. 11 presents the first layer of
the prior and final permeability fields for one of the 104 realiza-
tions of the ensemble. Fig. 11 shows that EnKF, ES and ES-MDA
(4� ) increased the permeability of the prior realization. The
three methods resulted in visually similar permeability fields.
Fig. 12 shows the ensemble standard deviation of log-permeabil-
ity, lnðkÞ, before and after data assimilation. Because EnKF and ES-
MDA (4� ) resulted better matches of data, both methods
resulted in lower values of standard deviation of lnðkÞ than were
obtained from the standard ES.

Table 2 presents the computational cost in terms of the
equivalent number of reservoir simulation runs for EnKF, ES and
Fig. 11. Permeability (mD) of the first layer of one of the 104 realizatio

Fig. 12. Standard deviation of log-permeability of the first layer: B
ES-MDA (4� ). The results in this table were obtained by measur-
ing the actual CPU time required during the data assimilations
divided by the average CPU time required for one reservoir
simulation run. Our covariance localization implementa-
tion requires running the ensemble mean model and comput-
ing pseudo-tracer concentrations, as described in Emerick and
Reynolds (2011a,b). For this reason, the CPU time required by ES
was higher than the CPU time required to run the 104 prior
realizations. The CPU time of ES-MDA (4� ) was 17% higher than
the CPU time of EnKF, but resulted in far better data matches than
were obtained with EnKF.
ns: Brugge case. (a) Prior, (b) EnKF, (c) ES, and (d) ES-MDA (4� ).

rugge case. (a) Prior, (b) EnKF, (c) ES, and (d) ES-MDA (4� ).
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10. Important comments

This work was motivated by our conjecture that when sequential
data have similar information content, the sequential assimilation of
data employed by EnKF provides an approximation of multiple
Gauss–Newton iterations. This conjecture yields a second conjecture,
namely, EnKF will typically give a better data match than ES because
the smoother effectively represents a single Gauss–Newton iteration
with an average sensitivity matrix (Reynolds et al., 2006). Although
we have not provided a proof of these conjectures, all results we
have presented here are consistent with these conjectures.

For ES-MDA, we only consider the parameter-estimation
problem. Thus, unlike EnKF, the parameters and states are always
consistent (Thulin et al., 2007). This fact helps to explain the
better data matches obtained by ES-MDA compared to EnKF.
11. Conclusions

In this paper, we introduced ES-MDA as an efficient iterative form
of ES. Even though we presented ES-MDA in the context of reservoir
history matching, the method is very general and can be applied in
other research areas. Moreover, ES-MDA requires very few modifica-
tions to a standard ES implementation. Based on the results from the
test problems, the following conclusions are warranted:
�
 ES performed poorly compared to standard EnKF and ES-MDA.

�
 ES-MDA resulted in better data matches than EnKF with

comparable computational cost.

�
 The results of the first and second examples indicate that ES-MDA

is computationally less expensive than batch-EnRML and results
in better data matches. Based on the results presented in Chen
and Oliver (2012), this conclusion also applies to the Brugge case.

�
 For the three examples considered in the paper, four data

assimilations were enough for providing good data matches.

�
 The use of the inflation coefficients, ai’s, in a decreasing order

resulted in only small improvements compared to using all ai

equal to the number of data assimilations.
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